Suppr超能文献

一种使用变色银纳米颗粒、智能手机成像和人工神经网络(ANN)检测鸡肉腐败的组合方法。

A combinatorial approach to chicken meat spoilage detection using color-shifting silver nanoparticles, smartphone imaging, and artificial neural network (ANN).

作者信息

Ghorbanizamani Faezeh

机构信息

Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornova, Izmir, Türkiye..

出版信息

Food Chem. 2025 Mar 15;468:142390. doi: 10.1016/j.foodchem.2024.142390. Epub 2024 Dec 9.

Abstract

Ensuring food freshness is crucial for public health. Biogenic amines (like histamine) are reliable spoilage indicators in protein-rich foods such as meat. This study presents a label-free colorimetric sensor using green-colored silver nanoparticles (AgNPs) functionalized with carboxylated polyvinylpyrrolidone (PVP-COOH) for sensitive BA detection. After optimizing pH, time, and temperature, the modified AgNPs achieved a detection limit (LOD) of 0.21 μg/mL and an analytical dynamic range of 10-100 μg/mL for histamine. Smartphone imaging was employed to capture colorimetric changes, and the extracted data were used to train an artificial neural network (ANN), enhancing the LOD to 0.09 μg/mL and extending the dynamic range to 0.5-200 μg/mL. The sensor was validated with real food samples, successfully monitoring histamine levels in chicken meat over three days, detecting spoilage-related changes with high sensitivity. This integrative approach combining AgNPs, smartphone imaging, and AI offers a powerful tool for advanced food freshness monitoring.

摘要

确保食品新鲜度对公众健康至关重要。生物胺(如组胺)是肉类等富含蛋白质的食品中可靠的腐败指标。本研究提出了一种无标记比色传感器,该传感器使用经羧化聚乙烯吡咯烷酮(PVP-COOH)功能化的绿色银纳米颗粒(AgNPs)来灵敏检测生物胺。在优化pH值、时间和温度后,改性AgNPs对组胺的检测限(LOD)为0.21μg/mL,分析动态范围为10 - 100μg/mL。利用智能手机成像来捕捉比色变化,并将提取的数据用于训练人工神经网络(ANN),从而将检测限提高到0.09μg/mL,并将动态范围扩展到0.5 - 200μg/mL。该传感器通过实际食品样本进行了验证,成功监测了鸡肉三天内的组胺水平,以高灵敏度检测到与腐败相关的变化。这种结合AgNPs、智能手机成像和人工智能的综合方法为先进的食品新鲜度监测提供了一个强大的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验