Ge Xiaoli, Zhang Chengyi, Janpandit Mayuresh, Prakash Shwetha, Gogoi Pratahdeep, Zhang Daoyang, Cook Timothy R, Waterhouse Geoffrey I N, Yin Longwei, Wang Ziyun, Li Yuguang C
Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.
School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand.
J Am Chem Soc. 2024 Dec 25;146(51):35305-35312. doi: 10.1021/jacs.4c12858. Epub 2024 Dec 12.
Electrochemical activation of dinitrogen (N) is notoriously challenging, typically yielding very low ammonia (NH) production rates. In this study, we present a continuous flow plasma-electrochemical reactor system for the direct conversion of nitrogen from air into ammonia. In our system, nitrogen molecules are first converted into a mixture of NO species in the plasma reactor, which are then fed into an electrochemical reactor. To selectively convert the generated NO species into NH, we employed a graph theory approach combined with first-principles calculations to comprehensively enumerate all possible pathways from N-to-NH, pinpointing key intermediates (NH* and NO*). A series of bimetallic catalysts was then designed to target the optimal adsorption and conversion of the limiting intermediate in the NO-to-NH pathway. Using an optimized CuPd foam catalyst, we demonstrated an ammonia production rate of 81.2 mg h cm with stability over 1000 h at an applied current of 2 A.
电化学活化氮气极具挑战性,通常产生的氨生成速率非常低。在本研究中,我们展示了一种连续流动等离子体 - 电化学反应器系统,用于将空气中的氮直接转化为氨。在我们的系统中,氮分子首先在等离子体反应器中转化为一氧化氮(NO)物种的混合物,然后将其送入电化学反应器。为了将生成的NO物种选择性地转化为氨,我们采用了图论方法并结合第一性原理计算,全面列举了从N到NH的所有可能途径,确定了关键中间体(NH和NO)。然后设计了一系列双金属催化剂,以实现NO到NH途径中限制中间体的最佳吸附和转化。使用优化的CuPd泡沫催化剂,我们在2 A的施加电流下展示了81.2 mg h cm的氨生成速率,并在1000 h内保持稳定。