Suppr超能文献

探索基于大语言模型的聊天机器人在核糖体谱数据分析挑战中的潜力:综述

Exploring the potential of large language model-based chatbots in challenges of ribosome profiling data analysis: a review.

作者信息

Ding Zheyu, Wei Rong, Xia Jianing, Mu Yonghao, Wang Jiahuan, Lin Yingying

机构信息

School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.

Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae641.

Abstract

Ribosome profiling (Ribo-seq) provides transcriptome-wide insights into protein synthesis dynamics, yet its analysis poses challenges, particularly for nonbioinformatics researchers. Large language model-based chatbots offer promising solutions by leveraging natural language processing. This review explores their convergence, highlighting opportunities for synergy. We discuss challenges in Ribo-seq analysis and how chatbots mitigate them, facilitating scientific discovery. Through case studies, we illustrate chatbots' potential contributions, including data analysis and result interpretation. Despite the absence of applied examples, existing software underscores the value of chatbots and the large language model. We anticipate their pivotal role in future Ribo-seq analysis, overcoming limitations. Challenges such as model bias and data privacy require attention, but emerging trends offer promise. The integration of large language models and Ribo-seq analysis holds immense potential for advancing translational regulation and gene expression understanding.

摘要

核糖体谱分析(Ribo-seq)能在全转录组范围内洞察蛋白质合成动态,但对其进行分析存在挑战,尤其是对于非生物信息学研究人员而言。基于大语言模型的聊天机器人通过利用自然语言处理提供了很有前景的解决方案。本综述探讨了它们的融合,突出了协同作用的机会。我们讨论了Ribo-seq分析中的挑战以及聊天机器人如何缓解这些挑战,以促进科学发现。通过案例研究,我们展示了聊天机器人的潜在贡献,包括数据分析和结果解释。尽管缺乏应用实例,但现有软件强调了聊天机器人和大语言模型的价值。我们预计它们在未来的Ribo-seq分析中将发挥关键作用,克服各种限制。诸如模型偏差和数据隐私等挑战需要关注,但新出现的趋势带来了希望。大语言模型与Ribo-seq分析的整合在推进翻译调控和基因表达理解方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/11638007/5c2aa6373aa2/bbae641ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验