Suppr超能文献

在医疗保健领域中应对ChatGPT

Surviving ChatGPT in healthcare.

作者信息

Liu Zhengliang, Zhang Lu, Wu Zihao, Yu Xiaowei, Cao Chao, Dai Haixing, Liu Ninghao, Liu Jun, Liu Wei, Li Quanzheng, Shen Dinggang, Li Xiang, Zhu Dajiang, Liu Tianming

机构信息

School of Computing, University of Georgia, Athens, GA, United States.

Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, United States.

出版信息

Front Radiol. 2024 Feb 23;3:1224682. doi: 10.3389/fradi.2023.1224682. eCollection 2023.

Abstract

At the dawn of of Artificial General Intelligence (AGI), the emergence of large language models such as ChatGPT show promise in revolutionizing healthcare by improving patient care, expanding medical access, and optimizing clinical processes. However, their integration into healthcare systems requires careful consideration of potential risks, such as inaccurate medical advice, patient privacy violations, the creation of falsified documents or images, overreliance on AGI in medical education, and the perpetuation of biases. It is crucial to implement proper oversight and regulation to address these risks, ensuring the safe and effective incorporation of AGI technologies into healthcare systems. By acknowledging and mitigating these challenges, AGI can be harnessed to enhance patient care, medical knowledge, and healthcare processes, ultimately benefiting society as a whole.

摘要

在通用人工智能(AGI)兴起之初,ChatGPT等大语言模型的出现有望通过改善患者护理、扩大医疗服务可及性以及优化临床流程来变革医疗保健领域。然而,将它们整合到医疗系统中需要仔细考虑潜在风险,例如不准确的医疗建议、侵犯患者隐私、伪造文件或图像、在医学教育中过度依赖AGI以及偏见的持续存在。实施适当的监督和监管以应对这些风险至关重要,确保AGI技术安全有效地融入医疗系统。通过认识并缓解这些挑战,可以利用AGI来改善患者护理、医学知识和医疗保健流程,最终使整个社会受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f96/10920216/9d37f57e74e1/fradi-03-1224682-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验