Suppr超能文献

具有无序壳层的亚纳米铂纳米线用于甲酸的高活性电催化氧化

Sub-Nanometer Pt Nanowires with Disordered Shells for Highly Active Electrocatalytic Oxidation of Formic Acid.

作者信息

Liu Gui, Luo Ruichun, Ma Junhao, Guo Tianqi, Kang Jianxin, Shi Wenxiong, Zhou Wu, Guo Lin

机构信息

School of Chemistry, Beihang University, Beijing, 100191, China.

School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Angew Chem Int Ed Engl. 2025 Mar 17;64(12):e202422199. doi: 10.1002/anie.202422199. Epub 2024 Dec 27.

Abstract

Controlled synthesis of one-dimensional materials at atomic-scale dimensions represents a milestone in nanotechnology, offering the potential to maximize atom utilization while enhancing catalytic performance. However, achieving structural stability and durability at such fine scales requires precise control over material structure and local chemical environment. Here, we introduce dimethylamine (DMA) as a small-molecule modifier, in contrast to conventional long-chain surfactants, to interact with surface Pt atoms. This approach facilitates the removal of surface Pt atoms bonded to nitrogen atoms in DMA during solubilization in water, effectively stripping the size of Pt nanowires down to sub-nanometer. The resulting Pt subnanometer nanowires (subNWs) feature a monoatomic-layer surface composed of disordered, bonding-unsaturated Pt atoms, and an interior crystalline core as narrow as 0.58 nm in diameter. These unique structural characteristics confer the Pt subNWs with an electrochemically active surface-area of 189 m ⋅ g during formic acid oxidation. Furthermore, the amorphous-like surface structure lowers the free energy of *OCOH intermediates and inhibits the formation of toxic byproducts CO, demonstrating exceptional electrocatalytic activity of 18.1 A ⋅ mg, surpassing most reported Pt-based electrocatalysts. Our work introduces a novel strategy for the controlled construction of nanowire-structures at sub-nanometer scale, effectively bridging the gap between ultrafine structural design and performance stability.

摘要

在原子尺度上对一维材料进行可控合成是纳米技术领域的一个里程碑,它在提高催化性能的同时,还具备最大化原子利用率的潜力。然而,要在如此精细的尺度上实现结构稳定性和耐久性,就需要对材料结构和局部化学环境进行精确控制。在此,我们引入二甲胺(DMA)作为小分子改性剂,与传统的长链表面活性剂不同,使其与表面的铂原子相互作用。这种方法有助于在水中溶解过程中去除与DMA中氮原子键合的表面铂原子,有效地将铂纳米线的尺寸缩小到亚纳米级。由此得到的铂亚纳米线(subNWs)具有由无序的、键不饱和的铂原子组成的单原子层表面,以及直径窄至0.58 nm的内部晶体核心。这些独特的结构特征赋予了铂亚纳米线在甲酸氧化过程中189 m²·g的电化学活性表面积。此外,类似非晶态的表面结构降低了*OCOH中间体的自由能,并抑制了有毒副产物CO的形成,展现出18.1 A·mg的卓越电催化活性,超过了大多数已报道的铂基电催化剂。我们的工作引入了一种在亚纳米尺度上可控构建纳米线结构的新策略,有效地弥合了超细结构设计与性能稳定性之间的差距。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验