Suppr超能文献

用于高稳定性锂硫电池的亚稳立方相碳化钼上增强的d-p轨道杂化

Strengthened d-p Orbital Hybridization on Metastable Cubic MoC for Highly Stable Lithium-Sulfur Batteries.

作者信息

Chen Kai, Zhu Yuxiang, Huang Zijian, Han Bin, Xu Qingchi, Fang Xiaoliang, Xu Jun

机构信息

Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, P. R. China.

School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia.

出版信息

ACS Nano. 2024 Dec 24;18(51):34791-34802. doi: 10.1021/acsnano.4c11701. Epub 2024 Dec 13.

Abstract

Suppressing the lithium polysulfide (LiPS) shuttling as well as accelerating the conversion kinetics is extremely crucial yet challenging in designing sulfur hosts for lithium-sulfur (Li-S) batteries. Phase engineering of nanomaterials is an intriguing approach for tuning the electronic structure toward regulating phase-dependent physicochemical properties. In this study, a metastable phase δ-MoC catalyst was elaborately synthesized via a boron doping strategy, which exhibited a phase transfer from hexagonal to cubic structure. The hierarchical tubular structure of the metastable cubic δ-MoC-decorated N-doped carbon nanotube (δ-B-MoC/NCNT) endows fast electron transfer and abundant polar sites for LiPSs. First-principles calculations reveal the strengthened chemical adsorption capability and hybridization between the d orbital of Mo metal and the p orbital of S atoms in LiPSs, contributing to higher electrocatalytic activity. Moreover, Raman analysis manifests accelerated redox conversion kinetics. Consequently, δ-B-MoC/NCNT renders the Li-S battery with a high specific capacity of 1385.6 mAh g at 0.1 C and a superior rate property of 606.3 mAh g at 4 C. Impressively, a satisfactory areal capacity of 6.95 mAh cm is achieved under the high sulfur loading of 6.8 mg cm. This work has gained crucial research significance for metastable catalyst design and phase engineering for Li-S batteries.

摘要

抑制多硫化锂(LiPS)穿梭以及加速转化动力学在设计锂硫(Li-S)电池的硫宿主时极为关键但具有挑战性。纳米材料的相工程是一种通过调整电子结构来调节相依赖的物理化学性质的有趣方法。在本研究中,通过硼掺杂策略精心合成了一种亚稳相δ-MoC催化剂,其呈现出从六方结构到立方结构的相转移。亚稳立方δ-MoC修饰的N掺杂碳纳米管(δ-B-MoC/NCNT)的分级管状结构赋予了快速电子转移能力以及大量用于LiPS的极性位点。第一性原理计算揭示了Mo金属的d轨道与LiPS中S原子的p轨道之间增强的化学吸附能力和杂化作用,有助于提高电催化活性。此外,拉曼分析表明氧化还原转化动力学加快。因此,δ-B-MoC/NCNT使Li-S电池在0.1 C时具有1385.6 mAh g的高比容量以及在4 C时具有606.3 mAh g的优异倍率性能。令人印象深刻的是,在6.8 mg cm的高硫负载下实现了6.95 mAh cm的令人满意的面积容量。这项工作对于Li-S电池的亚稳催化剂设计和相工程具有至关重要的研究意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验