Keirouz Antonios, Galiano Francesco, Russo Francesca, Fontananova Enrica, Castro-Dominguez Bernardo, Figoli Alberto, Mattia Davide, Leese Hannah S
Department of Chemical Engineering, Faculty of Engineering and Design, University of Bath, Bath BA2 7AY, U.K.
Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via Pietro Bucci 17/C, 87036 Arcavacata di Rende, Cosenza, Italy.
ACS Sustain Chem Eng. 2024 Nov 25;12(49):17713-17725. doi: 10.1021/acssuschemeng.4c06363. eCollection 2024 Dec 9.
High-performance and sustainable membranes for water desalination applications are crucial to address the growing global demand for clean water. Concurrently, electrospinning has emerged as a versatile manufacturing method for fabricating nanofibrous membranes for membrane distillation. However, widespread adoption of electrospinning for processing water-insoluble polymers, such as fluoropolymers, is hindered by the reliance on hazardous organic solvents during production. Moreover, restrictions on industrial solvents are tightening as environmental regulations demand greener alternatives. This critical challenge is addressed here by demonstrating, for the first time, the fabrication of nanofibrous electrospun membranes of PVDF-HFP, poly(vinylidene fluoride)-co-hexafluoropropylene using a renewable, environment- and user-friendly solvent system containing Cyrene (dihydrolevoglucosenone), dimethyl sulfoxide, and dimethyl carbonate. The same solvent system was further used to produce nanocomposite graphene oxide (GO) and graphene nanoplatelet (GNP)-containing nanofibrous electrospun membranes. When tested for water desalination via membrane distillation, these membranes either outperformed or matched the performance of those produced with hazardous organic solvents, achieving salt rejection rates of >99.84% and long-term stability. The economic viability of the green solvent system was further validated through Monte Carlo simulations. This work demonstrates the potential to move fluoropolymer electrospinning from dimethylformamide-based systems to greener alternatives, enabling the consistent production of high-quality nanofibrous membranes. These findings pave the way for more sustainable manufacturing practices in membrane technology, specifically for water desalination via membrane distillation.
用于海水淡化应用的高性能且可持续的膜对于满足全球对清洁水日益增长的需求至关重要。与此同时,静电纺丝已成为一种用于制造用于膜蒸馏的纳米纤维膜的通用制造方法。然而,在生产过程中对有害有机溶剂的依赖阻碍了静电纺丝在加工水不溶性聚合物(如含氟聚合物)方面的广泛应用。此外,随着环境法规要求更环保的替代品,对工业溶剂的限制正在收紧。本文首次展示了使用包含环戊酮(二氢左旋葡萄糖酮)、二甲基亚砜和碳酸二甲酯的可再生、环境友好且用户友好的溶剂体系制备聚偏氟乙烯 - 六氟丙烯(PVDF - HFP)纳米纤维静电纺丝膜,从而解决了这一关键挑战。相同的溶剂体系进一步用于制备含氧化石墨烯(GO)和石墨烯纳米片(GNP)的纳米复合纳米纤维静电纺丝膜。当通过膜蒸馏测试海水淡化性能时,这些膜的性能要么优于要么与使用有害有机溶剂制备的膜相当,实现了>99.84%的脱盐率和长期稳定性。通过蒙特卡罗模拟进一步验证了绿色溶剂体系的经济可行性。这项工作展示了将含氟聚合物静电纺丝从基于二甲基甲酰胺的体系转向更环保替代品的潜力,能够持续生产高质量的纳米纤维膜。这些发现为膜技术中更可持续的制造实践铺平了道路,特别是对于通过膜蒸馏进行海水淡化。
ACS Sustain Chem Eng. 2024-11-25
Environ Sci Technol. 2021-8-17
ACS Appl Mater Interfaces. 2015-9-24
ACS Appl Mater Interfaces. 2016-4-19
Nanomaterials (Basel). 2021-6-18
Environ Sci Pollut Res Int. 2022-11
Int J Biol Macromol. 2024-3
ACS Appl Polym Mater. 2021-4-9
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020-7
Chem Commun (Camb). 2014-9-4