Suppr超能文献

基于自发回路动力学预测微刺激对猕猴前额叶活动的影响。

Predicting the effect of micro-stimulation on macaque prefrontal activity based on spontaneous circuit dynamics.

作者信息

Nejatbakhsh Amin, Fumarola Francesco, Esteki Saleh, Toyoizumi Taro, Kiani Roozbeh, Mazzucato Luca

机构信息

Center for Theoretical Neuroscience, Columbia University, New York, New York 10027, USA.

Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.

出版信息

Phys Rev Res. 2024 Dec;5(4). doi: 10.1103/physrevresearch.5.043211. Epub 2024 Dec 7.

Abstract

A crucial challenge in targeted manipulation of neural activity is to identify perturbation sites whose stimulation exerts significant effects downstream with high efficacy, a procedure currently achieved by labor-intensive and potentially harmful trial and error. Can one predict the effects of electrical stimulation on neural activity based on the circuit dynamics during spontaneous periods? Here we show that the effects of single-site micro-stimulation on ensemble activity in an alert monkey's prefrontal cortex can be predicted solely based on the ensemble's spontaneous activity. We first inferred the ensemble's causal flow based on the directed functional interactions inferred during spontaneous periods using convergent cross-mapping and showed that it uncovers a causal hierarchy between the recording electrodes. We find that causal flow inferred at rest successfully predicts the spatiotemporal effects of micro-stimulation. We validate the computational features underlying causal flow using ground truth data from recurrent neural network models, showing that it is robust to noise and common inputs. A detailed comparison between convergent-cross mapping and alternative methods based on information theory reveals the advantages of the former method in predicting perturbation effects. Our results elucidate the causal interactions within neural ensembles and will facilitate the design of intervention protocols and targeted circuit manipulations suitable for brain-machine interfaces.

摘要

在对神经活动进行靶向操纵时,一个关键挑战是确定那些刺激能够高效地在下游产生显著效应的扰动位点,目前这一过程是通过劳动强度大且可能有害的试错法来实现的。能否基于自发活动期间的电路动力学来预测电刺激对神经活动的影响呢?在这里,我们表明,仅基于一个警觉猴子前额叶皮层中神经元集群的自发活动,就可以预测单位点微刺激对该集群活动的影响。我们首先使用收敛交叉映射法,根据自发活动期间推断出的定向功能相互作用,推断出该集群的因果流,并表明它揭示了记录电极之间的因果层次结构。我们发现,静息时推断出的因果流能够成功预测微刺激的时空效应。我们使用循环神经网络模型的真实数据验证了因果流背后的计算特征,表明它对噪声和共同输入具有鲁棒性。通过对收敛交叉映射法与基于信息论的其他方法进行详细比较,揭示了前一种方法在预测扰动效应方面的优势。我们的结果阐明了神经集群内部的因果相互作用,并将有助于设计适用于脑机接口的干预方案和靶向电路操纵。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验