Suppr超能文献

自发动力学可预测海马神经元培养物中靶向干预的效果。

Spontaneous Dynamics Predict the Effects of Targeted Intervention in Hippocampal Neuronal Cultures.

作者信息

Tentori Elisa, Kastellakis George, Maschietto Marta, Leparulo Alessandro, Poirazi Panayiota, Mazzucato Luca, Allegra Michele, Vassanelli Stefano

机构信息

Padova Neuroscience Center, University of Padua, Padua, 35129, Italy.

Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy.

出版信息

bioRxiv. 2025 Jul 1:2025.04.29.651327. doi: 10.1101/2025.04.29.651327.

Abstract

Achieving targeted perturbations of neural activity is essential for dissecting the causal architecture of brain circuits. A crucial challenge in targeted manipulation experiments is the identification of perturbation sites whose stimulation exerts desired effects, currently done with costly trial-and-error procedures. Can one predict stimulation effects solely based on observations of the circuit activity, in the absence of perturbation? We answer this question in dissociated neuronal cultures on High-Density Microelectrode Arrays (HD-MEAs), which, compared to preparations, offer a controllable platform that enables precise stimulation and full access to network dynamics. We first reconstruct the - the full map of network responses to focal electrical stimulation - by sequentially activating individual single sites and quantifying their network-wide effects. The measured perturbome patterns cluster into functional modules, with limited spread across clusters. We then demonstrate that the perturbome can be predicted from spontaneous activity alone. Using short baseline recordings in the absence of perturbations, we estimate Effective Connectivity (EC) and show that it predicts the spatial organization of the perturbome, including spatial clusters and local connectivity. Our results demonstrate that spontaneous dynamics encode the latent causal structure of neural circuits and that EC metrics can serve as effective, model-free proxies for stimulation outcomes. This framework enables data-driven targeting and causal inference , with potential applications to more complex preparations such as human iPSC-derived neurons and brain organoids, with implications for both basic research and therapeutic strategies targeting neurological disorders.

摘要

实现对神经活动的靶向扰动对于剖析脑回路的因果结构至关重要。靶向操纵实验中的一个关键挑战是识别那些刺激能产生预期效果的扰动位点,目前这是通过昂贵的试错程序来完成的。在没有扰动的情况下,能否仅基于对回路活动的观察来预测刺激效果?我们在高密度微电极阵列(HD-MEAs)上的解离神经元培养物中回答了这个问题,与其他制备方法相比,HD-MEAs提供了一个可控的平台,能够实现精确刺激并全面获取网络动态。我们首先通过依次激活单个位点并量化其全网络效应来重建扰动图谱——即网络对局灶性电刺激的完整反应图谱。所测量的扰动组模式聚集成功能模块,跨模块的传播有限。然后我们证明仅根据自发活动就能预测扰动组。在没有扰动的情况下使用短基线记录,我们估计有效连通性(EC),并表明它能预测扰动组的空间组织,包括空间簇和局部连通性。我们的结果表明,自发动力学编码了神经回路的潜在因果结构,并且EC指标可以作为刺激结果的有效、无模型代理。这个框架实现了数据驱动的靶向和因果推断,有可能应用于更复杂的制备方法,如人类诱导多能干细胞衍生的神经元和脑类器官,对基础研究和针对神经系统疾病的治疗策略都有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1324/12236820/8d76969910b0/nihpp-2025.04.29.651327v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验