Suppr超能文献

超声肾脏图像中肾细胞肾积水的检测:关于深度卷积神经网络功效的研究

Detection of renal cell hydronephrosis in ultrasound kidney images: a study on the efficacy of deep convolutional neural networks.

作者信息

Islam Umar, A Al-Atawi Abdullah, Alwageed Hathal Salamah, Mehmood Gulzar, Khan Faheem, Innab Nisreen

机构信息

Department of Computer Science, IQRA National Swat Campus, KPK, Pakistan.

Department of Computer Science, Applied College, University of Tabuk, Tabuk, Saudi Arabia.

出版信息

PeerJ Comput Sci. 2024 Jan 23;10:e1797. doi: 10.7717/peerj-cs.1797. eCollection 2024.

Abstract

In the realm of medical imaging, the early detection of kidney issues, particularly renal cell hydronephrosis, holds immense importance. Traditionally, the identification of such conditions within ultrasound images has relied on manual analysis, a labor-intensive and error-prone process. However, in recent years, the emergence of deep learning-based algorithms has paved the way for automation in this domain. This study aims to harness the power of deep learning models to autonomously detect renal cell hydronephrosis in ultrasound images taken in close proximity to the kidneys. State-of-the-art architectures, including VGG16, ResNet50, InceptionV3, and the innovative Novel DCNN, were put to the test and subjected to rigorous comparisons. The performance of each model was meticulously evaluated, employing metrics such as F1 score, accuracy, precision, and recall. The results paint a compelling picture. The Novel DCNN model outshines its peers, boasting an impressive accuracy rate of 99.8%. In the same arena, InceptionV3 achieved a notable 90% accuracy, ResNet50 secured 89%, and VGG16 reached 85%. These outcomes underscore the Novel DCNN's prowess in the realm of renal cell hydronephrosis detection within ultrasound images. Moreover, this study offers a detailed view of each model's performance through confusion matrices, shedding light on their abilities to categorize true positives, true negatives, false positives, and false negatives. In this regard, the Novel DCNN model exhibits remarkable proficiency, minimizing both false positives and false negatives. In conclusion, this research underscores the Novel DCNN model's supremacy in automating the detection of renal cell hydronephrosis in ultrasound images. With its exceptional accuracy and minimal error rates, this model stands as a promising tool for healthcare professionals, facilitating early-stage diagnosis and treatment. Furthermore, the model's convergence rate and accuracy hold potential for enhancement through further exploration, including testing on larger and more diverse datasets and investigating diverse optimization strategies.

摘要

在医学成像领域,肾脏问题的早期检测,尤其是肾细胞肾积水,具有极其重要的意义。传统上,在超声图像中识别此类病症依靠人工分析,这是一个劳动强度大且容易出错的过程。然而,近年来,基于深度学习的算法的出现为该领域的自动化铺平了道路。本研究旨在利用深度学习模型的力量,自动检测在肾脏附近拍摄的超声图像中的肾细胞肾积水。包括VGG16、ResNet50、InceptionV3和创新的新型深度卷积神经网络(Novel DCNN)在内的先进架构都经过了测试并进行了严格比较。每个模型的性能都通过F1分数、准确率、精确率和召回率等指标进行了细致评估。结果呈现出令人信服的景象。新型深度卷积神经网络模型表现优于其他同类模型,拥有高达99.8%的惊人准确率。在同一领域,InceptionV3达到了显著的90%的准确率,ResNet50为89%,VGG16为85%。这些结果凸显了新型深度卷积神经网络在超声图像中肾细胞肾积水检测领域的卓越能力。此外,本研究通过混淆矩阵详细展示了每个模型的性能,揭示了它们对真阳性、真阴性、假阳性和假阴性进行分类的能力。在这方面,新型深度卷积神经网络模型表现出卓越的熟练度,将假阳性和假阴性都降至最低。总之,本研究强调了新型深度卷积神经网络模型在超声图像中肾细胞肾积水自动检测方面的优越性。凭借其卓越的准确率和极低的错误率,该模型是医疗专业人员的一个有前途的工具,有助于早期诊断和治疗。此外,通过进一步探索,包括在更大、更多样化的数据集上进行测试以及研究各种优化策略,该模型的收敛速度和准确率还有提升的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0f/11636695/b74c627186eb/peerj-cs-10-1797-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验