Suppr超能文献

构建企业财务管理模型:利用多头注意力机制-Transformer进行用户信息转换。

Architecting an enterprise financial management model: leveraging multi-head attention mechanism-transformer for user information transformation.

作者信息

Yu Wan, Hamam Habib

机构信息

Huanghe Science and Technology University, Zhengzhou, Henan, China.

Faculty of Engineering, Uni de Moncton, Moncton, Canada.

出版信息

PeerJ Comput Sci. 2024 Mar 15;10:e1928. doi: 10.7717/peerj-cs.1928. eCollection 2024.

Abstract

Financial management assumes a pivotal role as a fundamental information system contributing to enterprise development. Nonetheless, prevalent methodologies frequently encounter challenges in proficiently overseeing diverse information streams inherent to financial management. This study introduces an innovative paradigm for enterprise financial management centered on the transformation of user information signals. In its initial phases, the methodology augments the Transformer network and self-attention mechanism to extract features pertaining to both users and financial data, fostering a more cohesive integration of financial and user information. Subsequently, a reinforcement learning-based alignment method is implemented to reconcile disparities between financial and user information, thereby enhancing semantic alignment. Ultimately, a signal conversion technique employing generative adversarial networks is deployed to harness user information, elevating financial management efficacy and, consequently, optimizing overall financial operations. The empirical validation of this approach, achieving an impressive mAP score of 81.9%, not only outperforms existing methodologies but also underscores the tangible impact and enhanced execution prowess that this paradigm brings to financial management systems. As such, this work not only contributes to the state of the art but also holds promise for revolutionizing the landscape of enterprise financial management.

摘要

财务管理作为企业发展的基础信息系统发挥着关键作用。然而,普遍的方法在有效管理财务管理固有的各种信息流时经常遇到挑战。本研究引入了一种以用户信息信号转换为核心的企业财务管理创新范式。在初始阶段,该方法增强了Transformer网络和自注意力机制,以提取与用户和财务数据相关的特征,促进财务和用户信息更紧密的整合。随后,实施基于强化学习的对齐方法来协调财务和用户信息之间的差异,从而增强语义对齐。最终,部署采用生成对抗网络的信号转换技术来利用用户信息,提高财务管理效率,进而优化整体财务运营。该方法的实证验证取得了令人印象深刻的81.9%的平均精度均值(mAP)分数,不仅优于现有方法,还突出了这种范式给财务管理系统带来的实际影响和更强的执行能力。因此,这项工作不仅为现有技术水平做出了贡献,也有望彻底改变企业财务管理的格局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验