Suppr超能文献

利用 Fed-GANCC 实现精准广告投放:一种利用生成对抗网络和群组聚类的新型联邦学习方法。

Empowering precise advertising with Fed-GANCC: A novel federated learning approach leveraging Generative Adversarial Networks and group clustering.

机构信息

Guangxi Vocational & Technical Institute of Industry, Nanning, Guangxi, China.

Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia.

出版信息

PLoS One. 2024 Apr 10;19(4):e0298261. doi: 10.1371/journal.pone.0298261. eCollection 2024.

Abstract

In the realm of targeted advertising, the demand for precision is paramount, and the traditional centralized machine learning paradigm fails to address this necessity effectively. Two critical challenges persist in the current advertising ecosystem: the data privacy concerns leading to isolated data islands and the complexity in handling non-Independent and Identically Distributed (non-IID) data and concept drift due to the specificity and diversity in user behavior data. Current federated learning frameworks struggle to overcome these hurdles satisfactorily. This paper introduces Fed-GANCC, an innovative federated learning framework that synergizes Generative Adversarial Networks (GANs) and Group Clustering. The framework incorporates a user data augmentation algorithm predicated on adversarial generative networks to enrich user behavior data, curtail the impact of non-uniform data distribution, and enhance the applicability of the global machine learning model. Unlike traditional approaches, our framework offers user data augmentation algorithms based on adversarial generative networks, which not only enriches user behavior data but also reduces the challenges posed by non-uniform data distribution, thereby enhancing the applicability of the global machine learning (ML) model. The effectiveness of Fed-GANCC is distinctly showcased through experimental results, outperforming contemporary methods like FED-AVG and FED-SGD in terms of accuracy, loss value, and receiver operating characteristic (ROC) indicators within the same computing time. Experimental results vindicate the effectiveness of Fed-GANCC, revealing substantial enhancements in accuracy, loss value, and receiver operating characteristic (ROC) metrics compared to FED-AVG and FED-SGD given the same computational time. These outcomes underline Fed-GANCC's exceptional prowess in mitigating issues such as isolated data islands, non-IID data, and concept drift. With its novel approach to addressing the prevailing challenges in targeted advertising such as isolated data islands, non-IID data, and concept drift, the Fed-GANCC framework stands as a benchmark, paving the way for future advancements in federated learning solutions tailored for the advertising domain. The Fed-GANCC framework promises to offer pivotal insights for the future development of efficient and advanced federated learning solutions for targeted advertising.

摘要

在目标广告领域,对精度的需求至关重要,传统的集中式机器学习范式无法有效地满足这一需求。当前的广告生态系统存在两个关键挑战:数据隐私问题导致数据孤岛,以及由于用户行为数据的特殊性和多样性,处理非独立同分布(non-IID)数据和概念漂移的复杂性。当前的联邦学习框架难以令人满意地克服这些障碍。本文介绍了 Fed-GANCC,这是一种创新的联邦学习框架,它结合了生成对抗网络(GAN)和分组聚类。该框架采用基于对抗生成网络的用户数据增强算法,丰富用户行为数据,减少非均匀数据分布的影响,增强全局机器学习模型的适用性。与传统方法不同,我们的框架提供基于对抗生成网络的用户数据增强算法,不仅丰富了用户行为数据,还减少了非均匀数据分布带来的挑战,从而增强了全局机器学习(ML)模型的适用性。Fed-GANCC 的有效性通过实验结果得到了明显的展示,在相同的计算时间内,它在准确性、损失值和接收器工作特征(ROC)指标方面优于当代方法,如 FED-AVG 和 FED-SGD。实验结果证明了 Fed-GANCC 的有效性,与 FED-AVG 和 FED-SGD 相比,在相同的计算时间内,Fed-GANCC 在准确性、损失值和接收器工作特征(ROC)指标方面有了显著的提高。这些结果突显了 Fed-GANCC 在缓解孤立数据岛、非独立同分布数据和概念漂移等问题方面的卓越能力。Fed-GANCC 框架通过解决目标广告领域中孤立数据岛、非独立同分布数据和概念漂移等普遍挑战的新方法,为联邦学习解决方案在广告领域的未来发展树立了标杆。Fed-GANCC 框架有望为高效、先进的联邦学习解决方案在目标广告领域的未来发展提供重要的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d16c/11006173/880f7f3fdad7/pone.0298261.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验