Suppr超能文献

基于大数据的新媒体实时情感分析。

A bigura-based real time sentiment analysis of new media.

作者信息

Xu Haili

机构信息

Guangzhou Huashang College, Guangzhou, Guangdong, China.

出版信息

PeerJ Comput Sci. 2024 Jun 28;10:e2069. doi: 10.7717/peerj-cs.2069. eCollection 2024.

Abstract

Public opinion mining is an active research domain, especially the penetration of the internet and the adoption of smartphones lead to the enormous generation of data in new media. Thus generation of large amounts of data leads to the limitation of traditional machine learning techniques. Therefore, the obvious adoption of deep learning for the said data. A multilayer BiGura modal-based technique for real-time sentiment detection is proposed. The proposed system is analysed on different viral incidents such as Gaza's invision. The exact case scenario is as follows "Taking Israel's demand for millions of people from northern Gaza to migrate to the south". In the experiment, the highest accuracy of the model in evaluating text content emotions and video content emotions reached 92.7% and 86.9%, respectively. Compared to Bayesian and K-nearest neighbour (KNN) classifiers, deep learning exhibits significant advantages in new media sentiment analysis. The classification accuracy has been improved by 3.88% and 4.33%, respectively. This research identified the fidelity of real-time emotion monitoring effectively capturing and understanding users' emotional tendencies. It can also monitor changes in public opinion in real-time. This study provides new technical means for sentiment analysis and public opinion monitoring in new media. It helps to achieve more accurate and real-time monitoring of public opinion, which has important practical significance for social stability and public safety.

摘要

舆论挖掘是一个活跃的研究领域,尤其是互联网的普及和智能手机的应用导致新媒体中产生了海量数据。因此,大量数据的产生导致了传统机器学习技术的局限性。所以,深度学习被明显应用于上述数据。提出了一种基于多层BiGura模型的实时情感检测技术。该系统在不同的热点事件(如加沙地带的局势)上进行了分析。具体情况如下:“以色列要求加沙地带北部数百万民众南迁”。在实验中,该模型在评估文本内容情感和视频内容情感时的最高准确率分别达到了92.7%和86.9%。与贝叶斯和K近邻(KNN)分类器相比,深度学习在新媒体情感分析中表现出显著优势。分类准确率分别提高了3.88%和4.33%。本研究确定了实时情感监测的保真度,能够有效捕捉和理解用户的情感倾向。它还可以实时监测舆论变化。本研究为新媒体中的情感分析和舆论监测提供了新的技术手段。有助于实现更准确、实时的舆论监测,对社会稳定和公共安全具有重要的现实意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1075/11636999/4463ee22e22a/peerj-cs-10-2069-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验