Suppr超能文献

探索健康组织在Instagram上发布的内容以及公众回应中的主题、情感和情绪:内容分析

Exploring Topics, Emotions, and Sentiments in Health Organization Posts and Public Responses on Instagram: Content Analysis.

作者信息

Paradise Vit Abigail, Magid Avi

机构信息

Department of Information Systems, The Max Stern Emek Yezreel College, Jezreel Valley Regional Council, Israel.

Management, Rambam Healthcare Campus, Haifa, Israel.

出版信息

JMIR Infodemiology. 2025 May 2;5:e70576. doi: 10.2196/70576.

Abstract

BACKGROUND

Social media is a vital tool for health organizations, enabling them to share evidence-based information, educate the public, correct misinformation, and support a more informed and healthier society.

OBJECTIVE

This study aimed to categorize health organizations' content on social media into topics; examine public engagement, sentiment, and emotional responses to these topics; and identify gaps in fear between health organizations' messages and the public response.

METHODS

Real data were collected from the official Instagram accounts of health organizations worldwide. The BERTopic algorithm for topic modeling was used to categorize health organizations' posts into distinct topics. For each identified topic, we analyzed the engagement metrics (number of comments and likes) of posts categorized under the same topic, calculating the average engagement received. We examined the sentiment and emotional content of both posts and responses within the same topic, providing insights into the distributions of sentiment and emotions for each topic. Special attention was given to identifying emotions, such as fear, expressed in the posts and responses. In addition, a linguistic analysis and an analysis of sentiments and emotions over time were conducted.

RESULTS

A total of 6082 posts and 82,982 comments were collected from the official Instagram accounts of 8 health organizations. The study revealed that topics related to COVID-19, vaccines, and humanitarian crises (such as the Ukraine conflict and the war in Gaza) generated the highest engagement. Our sentiment analysis of the responses to health organizations' posts showed that topics related to vaccines and monkeypox generated the highest percentage of negative responses. Fear was the dominant emotion expressed in the posts' text, while the public's responses showed more varied emotions, with anger notably high in discussions around vaccines. Gaps were observed between the level of fear conveyed in posts published by health organizations and in the fear conveyed in the public's responses to such posts, especially regarding mask wearing during COVID-19 and the influenza vaccine.

CONCLUSIONS

This study underscores the importance of transparent communication that considers the emotional and sentiment-driven responses of the public on social media, particularly regarding vaccines. Understanding the psychological and social dynamics associated with public interaction with health information online can help health organizations achieve public health goals, fostering trust, countering misinformation, and promoting informed health behavior.

摘要

背景

社交媒体是卫生组织的重要工具,使它们能够分享基于证据的信息、教育公众、纠正错误信息,并支持建立一个信息更丰富、更健康的社会。

目的

本研究旨在将卫生组织在社交媒体上的内容按主题进行分类;研究公众对这些主题的参与度、情绪和情感反应;并找出卫生组织信息与公众反应之间在恐惧方面的差距。

方法

从全球卫生组织的官方Instagram账户收集真实数据。使用用于主题建模的BERTopic算法将卫生组织的帖子分类为不同主题。对于每个确定的主题,我们分析了归类于同一主题下的帖子的参与度指标(评论数和点赞数),计算平均获得的参与度。我们研究了同一主题内帖子和回复的情绪及情感内容,深入了解每个主题的情绪和情感分布情况。特别关注识别帖子和回复中表达的恐惧等情绪。此外,还进行了语言分析以及对情绪和情感随时间的分析。

结果

从8个卫生组织的官方Instagram账户共收集到6082条帖子和82982条评论。研究表明,与新冠疫情、疫苗以及人道主义危机(如乌克兰冲突和加沙战争)相关的主题获得了最高参与度。我们对卫生组织帖子回复的情绪分析显示,与疫苗和猴痘相关的主题产生负面回复的比例最高。恐惧是帖子文本中表达的主要情绪,而公众的回复则表现出更多样化的情绪,在关于疫苗的讨论中愤怒情绪尤为突出。在卫生组织发布的帖子所传达的恐惧程度与公众对这类帖子的回复所传达的恐惧程度之间存在差距,特别是在新冠疫情期间戴口罩和流感疫苗方面。

结论

本研究强调了透明沟通的重要性,这种沟通要考虑公众在社交媒体上由情绪和情感驱动的反应,尤其是在疫苗方面。了解与公众在线与健康信息互动相关的心理和社会动态,有助于卫生组织实现公共卫生目标,增进信任、抵制错误信息并促进明智的健康行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df3/12084776/071b753c7960/infodemiology_v5i1e70576_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验