Suppr超能文献

边缘计算结合深度学习模型在突发事件网络舆情动态演化中的应用

Application of edge computing combined with deep learning model in the dynamic evolution of network public opinion in emergencies.

作者信息

Chen Min, Zhang Lili

机构信息

School of Business, Wenzhou University, Wenzhou, China.

出版信息

J Supercomput. 2023;79(2):1526-1543. doi: 10.1007/s11227-022-04733-8. Epub 2022 Jul 28.

Abstract

The aim is to clarify the evolution mechanism of Network Public Opinion (NPO) in public emergencies. This work makes up for the insufficient semantic understanding in NPO-oriented emotion analysis and tries to maintain social harmony and stability. The combination of the Edge Computing (EC) and Deep Learning (DL) model is applied to the NPO-oriented Emotion Recognition Model (ERM). Firstly, the NPO on public emergencies is introduced. Secondly, three types of NPO emergencies are selected as research cases. An emotional rule system is established based on the One-Class Classification (OCC) model as emotional standards. The word embedding representation method represents the preprocessed Weibo text data. Convolutional Neural Network (CNN) is used as the classifier. The NPO-oriented ERM is implemented on CNN and verified through comparative experiments after the CNN's hyperparameters are adjusted. The research results show that the text annotation of the NPO based on OCC emotion rules can obtain better recognition performance. Additionally, the recognition effect of the improved CNN is significantly higher than the Support Vector Machine (SVM) in traditional Machine Learning (ML). This work realizes the technological innovation of automatic emotion recognition of NPO groups and provides a basis for the relevant government agencies to handle the NPO in public emergencies scientifically.

摘要

目的是阐明公共突发事件中网络舆情的演变机制。这项工作弥补了面向网络舆情的情感分析中语义理解不足的问题,并试图维护社会和谐与稳定。将边缘计算(EC)和深度学习(DL)模型相结合应用于面向网络舆情的情感识别模型(ERM)。首先,介绍了公共突发事件中的网络舆情。其次,选取三类网络舆情突发事件作为研究案例。基于一类分类(OCC)模型建立情感规则系统作为情感标准。词嵌入表示方法对预处理后的微博文本数据进行表示。使用卷积神经网络(CNN)作为分类器。在CNN的超参数调整后,在CNN上实现面向网络舆情的ERM并通过对比实验进行验证。研究结果表明,基于OCC情感规则的网络舆情文本标注能够获得较好的识别性能。此外,改进后的CNN的识别效果明显高于传统机器学习(ML)中的支持向量机(SVM)。这项工作实现了网络舆情群体自动情感识别的技术创新,为相关政府机构科学处理公共突发事件中的网络舆情提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5269/9330939/b6bb7ba37c3f/11227_2022_4733_Fig1_HTML.jpg

相似文献

1
Application of edge computing combined with deep learning model in the dynamic evolution of network public opinion in emergencies.
J Supercomput. 2023;79(2):1526-1543. doi: 10.1007/s11227-022-04733-8. Epub 2022 Jul 28.
2
A CNN-Based Framework for Predicting Public Emotion and Multi-Level Behaviors Based on Network Public Opinion.
Front Psychol. 2022 Jun 23;13:909439. doi: 10.3389/fpsyg.2022.909439. eCollection 2022.
3
Emotion recognition of social media users based on deep learning.
PeerJ Comput Sci. 2023 Jun 14;9:e1414. doi: 10.7717/peerj-cs.1414. eCollection 2023.
4
Legal Early Warning of Public Crisis in Network Public Opinion Events Based on Emotional Tendency.
J Environ Public Health. 2022 Aug 23;2022:6367295. doi: 10.1155/2022/6367295. eCollection 2022.
6
An improved multi-input deep convolutional neural network for automatic emotion recognition.
Front Neurosci. 2022 Oct 4;16:965871. doi: 10.3389/fnins.2022.965871. eCollection 2022.
7
A Novel Affective Analysis System Modeling Method Integrating Affective Cognitive Model and Bi-LSTM Neural Network.
Comput Intell Neurosci. 2022 Oct 7;2022:1856496. doi: 10.1155/2022/1856496. eCollection 2022.
8
An Investigation of Deep Learning Models for EEG-Based Emotion Recognition.
Front Neurosci. 2020 Dec 23;14:622759. doi: 10.3389/fnins.2020.622759. eCollection 2020.

引用本文的文献

1
AI applications in disaster governance with health approach: A scoping review.
Arch Public Health. 2025 Aug 26;83(1):218. doi: 10.1186/s13690-025-01712-2.
2
Distributed opinion competition scheme with gradient-based neural network in social networks.
Sci Rep. 2024 Dec 28;14(1):30883. doi: 10.1038/s41598-024-81857-2.
3
A bigura-based real time sentiment analysis of new media.
PeerJ Comput Sci. 2024 Jun 28;10:e2069. doi: 10.7717/peerj-cs.2069. eCollection 2024.

本文引用的文献

1
Research on the Early-Warning Model of Network Public Opinion of Major Emergencies.
IEEE Access. 2021 Mar 17;9:44162-44172. doi: 10.1109/ACCESS.2021.3066242. eCollection 2021.
2
New media platform's understanding of Chinese social workers' anti-epidemic actions: an analysis of network public opinion based on COVID-19.
Soc Work Public Health. 2021 Nov 17;36(7-8):770-785. doi: 10.1080/19371918.2021.1954127. Epub 2021 Jul 30.
3
Sentimental Analysis of COVID-19 Tweets Using Deep Learning Models.
Infect Dis Rep. 2021 Apr 1;13(2):329-339. doi: 10.3390/idr13020032.
5
Improving inferences about private land conservation by accounting for incomplete reporting.
Conserv Biol. 2021 Aug;35(4):1174-1185. doi: 10.1111/cobi.13673. Epub 2021 Mar 8.
6
Determining Public Opinion of the COVID-19 Pandemic in South Korea and Japan: Social Network Mining on Twitter.
Healthc Inform Res. 2020 Oct;26(4):335-343. doi: 10.4258/hir.2020.26.4.335. Epub 2020 Oct 31.
7
Public Opinion Polarization by Individual Revenue from the Social Preference Theory.
Int J Environ Res Public Health. 2020 Feb 4;17(3):946. doi: 10.3390/ijerph17030946.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验