Chen Min, Zhang Lili
School of Business, Wenzhou University, Wenzhou, China.
J Supercomput. 2023;79(2):1526-1543. doi: 10.1007/s11227-022-04733-8. Epub 2022 Jul 28.
The aim is to clarify the evolution mechanism of Network Public Opinion (NPO) in public emergencies. This work makes up for the insufficient semantic understanding in NPO-oriented emotion analysis and tries to maintain social harmony and stability. The combination of the Edge Computing (EC) and Deep Learning (DL) model is applied to the NPO-oriented Emotion Recognition Model (ERM). Firstly, the NPO on public emergencies is introduced. Secondly, three types of NPO emergencies are selected as research cases. An emotional rule system is established based on the One-Class Classification (OCC) model as emotional standards. The word embedding representation method represents the preprocessed Weibo text data. Convolutional Neural Network (CNN) is used as the classifier. The NPO-oriented ERM is implemented on CNN and verified through comparative experiments after the CNN's hyperparameters are adjusted. The research results show that the text annotation of the NPO based on OCC emotion rules can obtain better recognition performance. Additionally, the recognition effect of the improved CNN is significantly higher than the Support Vector Machine (SVM) in traditional Machine Learning (ML). This work realizes the technological innovation of automatic emotion recognition of NPO groups and provides a basis for the relevant government agencies to handle the NPO in public emergencies scientifically.
目的是阐明公共突发事件中网络舆情的演变机制。这项工作弥补了面向网络舆情的情感分析中语义理解不足的问题,并试图维护社会和谐与稳定。将边缘计算(EC)和深度学习(DL)模型相结合应用于面向网络舆情的情感识别模型(ERM)。首先,介绍了公共突发事件中的网络舆情。其次,选取三类网络舆情突发事件作为研究案例。基于一类分类(OCC)模型建立情感规则系统作为情感标准。词嵌入表示方法对预处理后的微博文本数据进行表示。使用卷积神经网络(CNN)作为分类器。在CNN的超参数调整后,在CNN上实现面向网络舆情的ERM并通过对比实验进行验证。研究结果表明,基于OCC情感规则的网络舆情文本标注能够获得较好的识别性能。此外,改进后的CNN的识别效果明显高于传统机器学习(ML)中的支持向量机(SVM)。这项工作实现了网络舆情群体自动情感识别的技术创新,为相关政府机构科学处理公共突发事件中的网络舆情提供了依据。