Chakurkar Priti S, Vora Deepali, Patil Shruti, Kotecha Ketan
Computer Science and Engineering, Symbiosis Institute of Technology Pune, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India.
School of Computer Engineering, Dr.Vishwanath Karad MIT WORLD, PEACE UNIVERSITY, Kothrud, Pune, Maharashtra, India.
MethodsX. 2024 Jun 20;13:102796. doi: 10.1016/j.mex.2024.102796. eCollection 2024 Dec.
Accurate and timely crack localization is crucial for road safety and maintenance, but image processing and hand-crafted feature engineering methods, often fail to distinguish cracks from background noise under diverse lighting and surface conditions. This paper proposes a framework utilizing contextual U-Net deep learning model to automatically localize cracks in road images. The framework design considers crack localization as a task of pixel-level segmenting, and analyzing each pixel in a road image to determine if it belongs to a crack or not. The proposed U-Net model uses a robust EfficientNet encoder to capture crucial details (spatial features) and overall patterns (channel-wise features) within the road image. This balanced approach helps the model learn effectively from both individual elements and the context of the images, leading to improved crack detection. A customized hierarchical attention mechanism is designed to make U-Net model contextually adaptive to focus on relevant features at different scales and resolutions for accurately localizing road cracks that can vary widely in size and shape. The model's effectiveness is demonstrated through extensive evaluations on the benchmarked and custom-made datasets.
准确及时的裂缝定位对于道路安全和维护至关重要,但在不同的光照和路面条件下,图像处理和手工特征工程方法往往无法将裂缝与背景噪声区分开来。本文提出了一个利用上下文U-Net深度学习模型自动定位道路图像中裂缝的框架。该框架设计将裂缝定位视为像素级分割任务,通过分析道路图像中的每个像素来确定其是否属于裂缝。所提出的U-Net模型使用强大的EfficientNet编码器来捕捉道路图像中的关键细节(空间特征)和整体模式(通道级特征)。这种平衡的方法有助于模型从图像的各个元素和上下文有效地学习,从而提高裂缝检测能力。设计了一种定制的分层注意力机制,使U-Net模型在上下文上具有自适应性,以聚焦于不同尺度和分辨率下的相关特征,从而准确地定位大小和形状差异很大的道路裂缝。通过在基准数据集和定制数据集上的广泛评估,证明了该模型的有效性。