Suppr超能文献

自动指纹分析作为遗传性疾病歌舞伎综合征的诊断工具。

Automated fingerprint analysis as a diagnostic tool for the genetic disorder Kabuki syndrome.

作者信息

Agustsson Viktor Ingi, Bjornsson Pall Asgeir, Fridriksdottir Ashildur, Bjornsson Hans Tomas, Ellingsen Lotta Maria

机构信息

Faculty of Medicine, University of Iceland, Reykjavik, Iceland.

Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland.

出版信息

Genet Med Open. 2024 Aug 7;2:101884. doi: 10.1016/j.gimo.2024.101884. eCollection 2024.

Abstract

PURPOSE

Emerging therapeutic strategies for Kabuki syndrome (KS) make early diagnosis critical. Fingerprint analysis as a diagnostic aid for KS diagnosis could facilitate early diagnosis and expand the current patient base for clinical trials and natural history studies.

METHOD

Fingerprints of 74 individuals with KS, 1 individual with a KS-like phenotype, and 108 controls were collected through a mobile app. KS fingerprint patterns were studied using logistic regression and a convolutional neural network to differentiate KS individuals from controls.

RESULTS

Our analysis identified 2 novel KS metrics (folding finger ridge count and simple pattern), which significantly differentiated KS fingerprints from controls, producing an area under the receiver operating characteristic curve value of 0.82 [0.75; 0.89] and a likelihood ratio of 9.0. This metric showed a sensitivity of 35.6% [23.73%; 47.46%] and a specificity of 96.04% [92.08%; 99.01%]. An independent artificial intelligence convolutional neural network classification-based method validated this finding and yielded comparable results, with a likelihood ratio of 8.7, sensitivity of 76.6%, and specificity of 91.2%.

CONCLUSION

Our findings suggest that automatic fingerprint analysis can have diagnostic use for KS and possible future utility for diagnosing other genetic disorders, enabling greater access to genetic diagnosis in areas with limited availability of genetic testing.

摘要

目的

歌舞伎综合征(KS)新出现的治疗策略使得早期诊断至关重要。指纹分析作为KS诊断的辅助手段,有助于早期诊断,并扩大当前用于临床试验和自然史研究的患者群体。

方法

通过一款移动应用收集了74例KS患者、1例具有KS样表型的个体以及108名对照者的指纹。使用逻辑回归和卷积神经网络研究KS指纹模式,以区分KS个体与对照者。

结果

我们的分析确定了2个新的KS指标(折叠指纹嵴计数和简单模式),它们能显著区分KS指纹与对照者指纹,受试者工作特征曲线下面积值为0.82[0.75;0.89],似然比为9.0。该指标的灵敏度为35.6%[23.73%;47.46%],特异度为96.04%[92.08%;99.01%]。一种基于独立人工智能卷积神经网络分类的方法验证了这一发现,并得出了类似的结果,似然比为8.7,灵敏度为76.6%,特异度为91.2%。

结论

我们的研究结果表明,自动指纹分析可用于KS的诊断,未来可能也有助于诊断其他遗传疾病,从而使在基因检测条件有限的地区能有更多机会进行基因诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b227/11613772/e16319f1c910/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验