Suppr超能文献

SMURF:统计模态唯一性与冗余分解

SMURF: Statistical Modality Uniqueness and Redundancy Factorization.

作者信息

Wörtwein Torsten, Allen Nicholas B, Cohn Jeffrey F, Morency Louis-Philippe

机构信息

Educational Testing Service, Pittsburgh, PA, USA.

University of Oregon, Eugene, OR, USA.

出版信息

Proc ACM Int Conf Multimodal Interact. 2024;2024:339-349. doi: 10.1145/3678957.3685716. Epub 2024 Nov 4.

Abstract

Multimodal late fusion is a well-performing fusion method that sums the outputs of separately processed modalities, so-called modality contributions, to create a prediction; for example, summing contributions from vision, acoustic, and language to predict affective states. In this paper, our primary goal is to improve the interpretability of what modalities contribute to the prediction in late fusion models. More specifically, we want to factorize modality contributions into what is consistently shared by at least two modalities (pairwise redundant contributions) and what the remaining modality-specific contributions are (unique contributions). Our secondary goal is to improve robustness to missing modalities by encouraging the model to learn redundant contributions. To achieve our two goals, we propose SMURF (Statistical Modality Uniqueness and Redundancy Factorization), a late fusion method that factorizes its outputs into a) unique contributions that are uncorrelated with all other modalities and b) pairwise redundant contributions that are maximally correlated between two modalities. For our primary goal, we 1) verify SMURF's factorization on a synthetic dataset, 2) ensure that its factorization does not degrade predictive performance on eight affective datasets, and 3) observe significant relationships between its factorization and human judgments on three datasets. For our secondary goal, we demonstrate that SMURF leads to more robustness to missing modalities at test time compared to three late fusion baselines.

摘要

多模态后期融合是一种性能良好的融合方法,它将单独处理的模态的输出(即所谓的模态贡献)相加,以生成预测结果;例如,将视觉、声学和语言方面的贡献相加,以预测情感状态。在本文中,我们的主要目标是提高后期融合模型中各模态对预测贡献的可解释性。更具体地说,我们希望将模态贡献分解为至少两个模态一致共享的部分(成对冗余贡献)以及其余的模态特定贡献(独特贡献)。我们的次要目标是通过鼓励模型学习冗余贡献来提高对缺失模态的鲁棒性。为了实现这两个目标,我们提出了SMURF(统计模态唯一性和冗余分解),这是一种后期融合方法,它将其输出分解为:a)与所有其他模态不相关的独特贡献,以及b)两个模态之间最大程度相关的成对冗余贡献。对于我们的主要目标,我们:1)在一个合成数据集上验证SMURF的分解,2)确保其分解不会降低在八个情感数据集上的预测性能,3)在三个数据集上观察其分解与人类判断之间的显著关系。对于我们的次要目标,我们证明,与三个后期融合基线相比,SMURF在测试时对缺失模态具有更高的鲁棒性。

相似文献

1
SMURF: Statistical Modality Uniqueness and Redundancy Factorization.
Proc ACM Int Conf Multimodal Interact. 2024;2024:339-349. doi: 10.1145/3678957.3685716. Epub 2024 Nov 4.
2
Attention-based multimodal fusion with contrast for robust clinical prediction in the face of missing modalities.
J Biomed Inform. 2023 Sep;145:104466. doi: 10.1016/j.jbi.2023.104466. Epub 2023 Aug 5.
3
Human-Guided Modality Informativeness for Affective States.
Proc ACM Int Conf Multimodal Interact. 2021 Oct;2021:728-734. doi: 10.1145/3462244.3481004.
4
Towards robust multimodal ultrasound classification for liver tumor diagnosis: A generative approach to modality missingness.
Comput Methods Programs Biomed. 2025 Jun;265:108759. doi: 10.1016/j.cmpb.2025.108759. Epub 2025 Mar 30.
5
Missing-modality enabled multi-modal fusion architecture for medical data.
J Biomed Inform. 2025 Apr;164:104796. doi: 10.1016/j.jbi.2025.104796. Epub 2025 Feb 21.
6
Robust Multimodal Learning With Missing Modalities via Parameter-Efficient Adaptation.
IEEE Trans Pattern Anal Mach Intell. 2025 Feb;47(2):742-754. doi: 10.1109/TPAMI.2024.3476487. Epub 2025 Jan 9.
8
Joint learning-based feature reconstruction and enhanced network for incomplete multi-modal brain tumor segmentation.
Comput Biol Med. 2023 Sep;163:107234. doi: 10.1016/j.compbiomed.2023.107234. Epub 2023 Jul 4.
9
Multimodal Sentiment Analysis Based on Cross-Modal Attention and Gated Cyclic Hierarchical Fusion Networks.
Comput Intell Neurosci. 2022 Aug 9;2022:4767437. doi: 10.1155/2022/4767437. eCollection 2022.
10
CMAF-Net: a cross-modal attention fusion-based deep neural network for incomplete multi-modal brain tumor segmentation.
Quant Imaging Med Surg. 2024 Jul 1;14(7):4579-4604. doi: 10.21037/qims-24-9. Epub 2024 Jun 27.

本文引用的文献

1
A Novel Approach to the Partial Information Decomposition.
Entropy (Basel). 2022 Mar 13;24(3):403. doi: 10.3390/e24030403.
2
Learning Disentangled Representation for Multimodal Cross-Domain Sentiment Analysis.
IEEE Trans Neural Netw Learn Syst. 2023 Oct;34(10):7956-7966. doi: 10.1109/TNNLS.2022.3147546. Epub 2023 Oct 5.
3
Human-Guided Modality Informativeness for Affective States.
Proc ACM Int Conf Multimodal Interact. 2021 Oct;2021:728-734. doi: 10.1145/3462244.3481004.
4
Psychobiological markers of allostatic load in depressed and nondepressed mothers and their adolescent offspring.
J Child Psychol Psychiatry. 2021 Feb;62(2):199-211. doi: 10.1111/jcpp.13264. Epub 2020 May 21.
5
Multimodal Machine Learning: A Survey and Taxonomy.
IEEE Trans Pattern Anal Mach Intell. 2019 Feb;41(2):423-443. doi: 10.1109/TPAMI.2018.2798607. Epub 2018 Jan 25.
6
Estimating mutual information.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066138. doi: 10.1103/PhysRevE.69.066138. Epub 2004 Jun 23.
7
Generalized additive models for medical research.
Stat Methods Med Res. 1995 Sep;4(3):187-96. doi: 10.1177/096228029500400302.
8
Significance of vocal and visual channels in the decoding of emotional meaning.
J Commun. 1973 Mar;23(1):118-30. doi: 10.1111/j.1460-2466.1973.tb00936.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验