Suppr超能文献

利用机器学习识别拇指腕掌关节置换术后短期并发症的危险因素。

Using machine learning to identify risk factors for short-term complications following thumb carpometacarpal arthroplasty.

作者信息

Shah Rohan M, Khazanchi Rushmin, Bajaj Anitesh, Rana Krishi, Malhotra Saaz, Wolf Jennifer Moriatis

机构信息

Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

Northwestern University, Evanston, IL, USA.

出版信息

J Hand Microsurg. 2024 Sep 20;16(5):100156. doi: 10.1016/j.jham.2024.100156. eCollection 2024 Dec.

Abstract

BACKGROUND

Thumb carpometacarpal (CMC) joint osteoarthritis is among the most common degenerative hand diseases. Thumb CMC arthroplasty, or trapeziectomy with or without tendon augmentation, is the most frequently performed surgical treatment and has a strong safety profile. Though adverse outcomes are infrequent, the ability to predict risk for complications has substantial clinical benefits. In the present study, we evaluated a well-known surgical database with machine learning (ML) techniques to predict short-term complications and reoperations after thumb CMC arthroplasty.

METHODS

A retrospective study was conducted using data from the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) years 2005-2020. Outcomes were 30-day wound and medical complications and 30-day return to the operating room. We used three ML algorithms - a Random Forest (RF), Elastic-Net Regression (ENet), and Extreme Gradient Boosted Tree (XGBoost), and a deep learning Neural Network (NN). Feature importance analysis was performed in the highest performing model for each outcome to identify predictors with the greatest contributions.

RESULTS

We included a total of 7711 cases. The RF was the best performing algorithm for all outcomes, with an AUC score of 0.61±0.03 for reoperations, 0.55±0.04 for medical complications, and 0.59±0.03 for wound complications. On feature importance analysis, procedure duration was the highest weighted predictor for reoperations. In all outcomes, procedure duration, older age, and female sex were consistently among the top five predictors.

CONCLUSIONS

We successfully developed ML algorithms to predict reoperations, wound complications, and medical complications. RF models had the highest performance in all outcomes.

摘要

背景

拇指腕掌(CMC)关节骨关节炎是最常见的手部退行性疾病之一。拇指CMC关节成形术,即带或不带肌腱增强的大多角骨切除术,是最常实施的外科治疗方法,且安全性良好。尽管不良后果并不常见,但预测并发症风险的能力具有重大临床意义。在本研究中,我们使用机器学习(ML)技术评估了一个知名的外科手术数据库,以预测拇指CMC关节成形术后的短期并发症和再次手术情况。

方法

利用美国外科医师学会国家外科质量改进计划(ACS-NSQIP)2005年至2020年的数据进行了一项回顾性研究。结局指标为30天伤口及医疗并发症以及30天返回手术室的情况。我们使用了三种ML算法——随机森林(RF)、弹性网络回归(ENet)和极端梯度提升树(XGBoost),以及一种深度学习神经网络(NN)。对每个结局表现最佳的模型进行特征重要性分析,以确定贡献最大的预测因素。

结果

我们共纳入7711例病例。RF是所有结局表现最佳的算法,再次手术的AUC评分为0.61±0.03,医疗并发症为0.55±0.04,伤口并发症为0.59±0.03。在特征重要性分析中,手术持续时间是再次手术加权最高的预测因素。在所有结局中,手术持续时间、年龄较大和女性性别始终位列前五大预测因素之中。

结论

我们成功开发了ML算法来预测再次手术、伤口并发症和医疗并发症。RF模型在所有结局中表现最佳。

相似文献

9
Surgical treatment for the thumb-in-palm deformity in patients with cerebral palsy.脑瘫患者拇指内收畸形的手术治疗。
Cochrane Database Syst Rev. 2005 Oct 19;2005(4):CD004093. doi: 10.1002/14651858.CD004093.pub2.

引用本文的文献

本文引用的文献

1
Artificial intelligence in patient-specific hand surgery: a scoping review of literature.人工智能在手外科中的应用:文献的系统评价。
Int J Comput Assist Radiol Surg. 2023 Aug;18(8):1393-1403. doi: 10.1007/s11548-023-02831-3. Epub 2023 Jan 12.
10
Revision surgery after trapeziometacarpal arthroplasty.掌骨间关节成形术后的翻修手术。
Arch Orthop Trauma Surg. 2011 Feb;131(2):205-10. doi: 10.1007/s00402-010-1128-x. Epub 2010 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验