Suppr超能文献

利用机器学习和深度学习预测扳机指松解术后的短期并发症。

Using machine and deep learning to predict short-term complications following trigger digit release surgery.

作者信息

Shah Rohan M, Khazanchi Rushmin, Bajaj Anitesh, Rana Krishi, Saklecha Anjay, Wolf Jennifer Moriatis

机构信息

Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

Northwestern University, Evanston, IL, USA.

出版信息

J Hand Microsurg. 2024 Oct 28;17(1):100171. doi: 10.1016/j.jham.2024.100171. eCollection 2025 Jan.

Abstract

BACKGROUND

Trigger finger is a common disorder of the hand characterized by pain and locking of the digits during flexion or extension. In cases refractory to nonoperative management, surgical release of the A1 pulley can be performed. This study evaluates the ability of machine learning (ML) techniques to predict short-term complications following trigger digit release surgery.

METHODS

A retrospective study was conducted using data for trigger digit release from the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) years 2005-2020. Outcomes of interest were 30-day complications and 30-day return to the operating room. Three ML algorithms were evaluated - a Random Forest (RF), Elastic-Net Regression (ENet), and Extreme Gradient Boosted Tree (XGBoost), along with a deep learning Neural Network (NN). Feature importance analysis was performed in the highest performing model for each outcome to identify predictors with the greatest contributions.

RESULTS

We included a total of 1209 cases of trigger digit release. The best algorithm for predicting wound complications was the RF, with an AUC of 0.64 ± 0.04. The XGBoost algorithm was best performing for medical complications (AUC: 0.70 ± 0.06) and reoperations (AUC: 0.60 ± 0.07). All three models had performance significantly above the AUC benchmark of 0.50 ± 0.00. On our feature importance analysis, age was distinctively the highest contributing predictor of wound complications.

CONCLUSIONS

Machine learning can be successfully used for risk stratification in surgical patients. Moving forwards, it is imperative for hand surgeons to continue evaluating applications of ML in the field.

摘要

背景

扳机指是一种常见的手部疾病,其特征为手指在屈伸过程中出现疼痛和卡顿。对于非手术治疗无效的病例,可进行A1滑车的手术松解。本研究评估机器学习(ML)技术预测扳机指松解术后短期并发症的能力。

方法

采用美国外科医师学会国家外科质量改进计划(ACS-NSQIP)2005 - 2020年扳机指松解的数据进行回顾性研究。关注的结果是30天内的并发症和30天内返回手术室的情况。评估了三种ML算法——随机森林(RF)、弹性网络回归(ENet)和极端梯度提升树(XGBoost),以及一个深度学习神经网络(NN)。对每个结果的表现最佳模型进行特征重要性分析,以确定贡献最大的预测因素。

结果

我们共纳入1209例扳机指松解病例。预测伤口并发症的最佳算法是RF,曲线下面积(AUC)为0.64±0.04。XGBoost算法在预测医疗并发症(AUC:0.70±0.06)和再次手术(AUC:0.60±0.07)方面表现最佳。所有三个模型的表现均显著高于AUC基准值0.50±0.00。在我们的特征重要性分析中,年龄明显是伤口并发症的最大贡献预测因素。

结论

机器学习可成功用于手术患者的风险分层。展望未来,手外科医生必须继续评估ML在该领域的应用。

相似文献

5
Surgery for trigger finger.扳机指手术
Cochrane Database Syst Rev. 2018 Feb 20;2(2):CD009860. doi: 10.1002/14651858.CD009860.pub2.

本文引用的文献

1
Insights and trends review: artificial intelligence in hand surgery.见解与趋势综述:手外科中的人工智能
J Hand Surg Eur Vol. 2023 May;48(5):396-403. doi: 10.1177/17531934231152592. Epub 2023 Feb 9.
3
Artificial intelligence in patient-specific hand surgery: a scoping review of literature.人工智能在手外科中的应用:文献的系统评价。
Int J Comput Assist Radiol Surg. 2023 Aug;18(8):1393-1403. doi: 10.1007/s11548-023-02831-3. Epub 2023 Jan 12.
5
Updates in Diabetic Wound Healing, Inflammation, and Scarring.糖尿病伤口愈合、炎症及瘢痕形成的研究进展
Semin Plast Surg. 2021 Aug;35(3):153-158. doi: 10.1055/s-0041-1731460. Epub 2021 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验