Suppr超能文献

基于氧化应激相关基因的非小细胞肺癌(NSCLC)预后模型的构建与验证:预测患者预后和治疗反应

Construction and validation of a prognostic model based on oxidative stress-related genes in non-small cell lung cancer (NSCLC): predicting patient outcomes and therapy responses.

作者信息

Sun Dongfeng, Lu Jie, Zhao Wenhua, Chen Xiaozheng, Xiao Changyan, Hua Feng, Hydbring Per, Gabazza Esteban C, Tartarone Alfredo, Zhao Xiaoming, Yang Wenfeng

机构信息

Department of Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Shandong Academy of Medical Science, Jinan, China.

Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China.

出版信息

Transl Lung Cancer Res. 2024 Nov 30;13(11):3152-3174. doi: 10.21037/tlcr-24-888. Epub 2024 Nov 28.

Abstract

BACKGROUND

Non-small cell lung cancer (NSCLC) is a significant health concern. The prognostic value of oxidative stress (OS)-related genes in NSCLC remains unclear. The study aimed to explore the prognostic significance of OS-genes in NSCLC using extensive datasets from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO).

METHODS

The research used the expression data and clinical information of NSCLC patients to develop a risk-score model. A total of 74 OS-related differentially expressed genes (DEGs) were identified by comparing NSCLC and control samples. Univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses were employed to identify the prognostic biomarkers. A risk-score model was constructed and validated with receiver operating characteristic (ROC) curves in TCGA and GSE72094 datasets. The model's accuracy was further verified by univariate and multivariate Cox regression.

RESULTS

The identified biomarkers, including lactate dehydrogenase A (LDHA), protein tyrosine phosphatase receptor type N (PTPRN), and transient receptor potential cation channel subfamily A (TRPA1) demonstrated prognostic significance in NSCLC. The risk-score model showed good predictive accuracy, with 1-year area under the curves (AUC) of 0.661, 3-year AUC of 0.648, and 5-year AUC of 0.634 in the TCGA dataset, and 1-year AUC of 0.643, 3-year AUC of 0.648, and 5-year AUC of 0.662 in the GSE72094 dataset. A nomogram integrating risk score and tumor node metastasis (TNM) stage was developed. The signature effectively distinguished between patient responses to immunotherapy. High-risk groups were characterized by an immunosuppressive microenvironment and an increased tumor mutational burden (TMB), marked by a higher incidence of mutations in genes such as , , , and . Organoid drug sensitivity testing revealed that NSCLC patients with a low-risk score responded better to chemotherapy.

CONCLUSIONS

This study successfully developed a robust model for predicting patient prognosis in NSCLC, highlighting the critical prognostic value of OS-genes. These findings hold significant potential to refine treatment strategies, and enhance survival outcomes for NSCLC patients. By enabling a personalized therapeutic approach tailored to individual risk scores, this model may facilitate more precise decisions concerning immunotherapy and chemotherapy, thereby optimizing patient management and treatment efficacy.

摘要

背景

非小细胞肺癌(NSCLC)是一个重大的健康问题。氧化应激(OS)相关基因在NSCLC中的预后价值仍不清楚。本研究旨在利用来自癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)的大量数据集,探讨OS基因在NSCLC中的预后意义。

方法

本研究使用NSCLC患者的表达数据和临床信息建立风险评分模型。通过比较NSCLC样本和对照样本,共鉴定出74个与OS相关的差异表达基因(DEG)。采用单因素Cox回归和最小绝对收缩和选择算子(LASSO)回归分析来鉴定预后生物标志物。构建风险评分模型,并在TCGA和GSE72094数据集中用受试者工作特征(ROC)曲线进行验证。通过单因素和多因素Cox回归进一步验证模型的准确性。

结果

鉴定出的生物标志物,包括乳酸脱氢酶A(LDHA)、蛋白酪氨酸磷酸酶受体N型(PTPRN)和瞬时受体电位阳离子通道亚家族A(TRPA1),在NSCLC中显示出预后意义。风险评分模型显示出良好的预测准确性,在TCGA数据集中,1年曲线下面积(AUC)为0.661,3年AUC为0.648,5年AUC为0.634;在GSE72094数据集中,1年AUC为0.643,3年AUC为0.648,5年AUC为0.662。开发了一个整合风险评分和肿瘤淋巴结转移(TNM)分期的列线图。该特征有效地区分了患者对免疫治疗的反应。高危组的特征是免疫抑制微环境和肿瘤突变负担(TMB)增加,其特征是诸如 、 、 和 等基因的突变发生率较高。类器官药物敏感性测试显示,低风险评分的NSCLC患者对化疗反应更好。

结论

本研究成功开发了一种强大的模型来预测NSCLC患者的预后,突出了OS基因的关键预后价值。这些发现具有优化治疗策略和提高NSCLC患者生存结局的巨大潜力。通过实现根据个体风险评分量身定制的个性化治疗方法,该模型可能有助于就免疫治疗和化疗做出更精确的决策,从而优化患者管理和治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b76c/11632443/36ae8889cd19/tlcr-13-11-3152-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验