Stewart A J, Chargari C, Chyrek A, Eckert F, Guinot J L, Hellebust T P, Hoskin P, Kirisits C, Pieters B, Siebert F A, Tagliaferri L, Tanderup K, Todor D, Wojcieszek P, Hannoun-Levi J M
Royal Surrey County Hospital, Guildford, United Kingdom.
University of Surrey, Guildford, England, United Kingdom.
Clin Transl Radiat Oncol. 2024 Nov 8;50:100885. doi: 10.1016/j.ctro.2024.100885. eCollection 2025 Jan.
Brachytherapy (BT) plays a key role in cancer treatment by delivering a high dose to a small volume over a short time. The use of BT is currently validated in a wide range of cancers such as cervical, prostate and breast cancers while being a favourable choice for organ preservation, such as in penile or rectal cancer, or in the setting of reirradiation. Consideration of the radiobiology of BT is integral to the choices made around dose and fractionation and combination with other techniques such as external beam radiotherapy (EBRT). Much of the radiobiology of brachytherapy is based on historic data, but fortunately there is a drive to integrate translational research including radiobiologic parameters into modern BT research. In a changing therapeutic landscape moving to a high dose rate (HDR) based on high dose per fraction, it is important to ensure that the incorporation of new radiobiology knowledge helps to drive clinical practice. This manuscript takes the ESTRO Brachytherapy pre-meeting course (May 3, 2024 - Glasgow ESTRO meeting) as a base and develops the concepts to present an overview of radiobiology in brachytherapy. Presented are 3 different considerations: the fundamentals of BT radiobiology (BT radiobiology history, biology and BT, α/β and re-irradiation), the pre-clinical radiobiology approach (pulsed dose radiotherapy (PDR) vs HDR, BT vs best EBRT techniques, high dose regions and integrated boost) and clinical radiobiology approaches (optimal number of BT fractions, radiobiology in BR for cervical, prostate, breast, skin/H&N and gastro-intestinal cancers). Presented is an analysis of radiobiology and modelling in BT aiding the integration of scientific pre-clinical and clinical data to allow a better understanding of the use of radioactive sources for cancer treatment.
近距离放射治疗(BT)通过在短时间内将高剂量辐射传递至小体积组织,在癌症治疗中发挥着关键作用。目前,BT已在多种癌症(如宫颈癌、前列腺癌和乳腺癌)的治疗中得到验证,同时也是器官保留治疗(如阴茎癌或直肠癌)或再程放疗的理想选择。BT的放射生物学考量是剂量分割以及与外照射放疗(EBRT)等其他技术联合应用决策的重要组成部分。BT的放射生物学研究大多基于历史数据,但幸运的是,目前有一种将包括放射生物学参数在内的转化研究纳入现代BT研究的趋势。在治疗模式向基于高分次剂量的高剂量率(HDR)转变的背景下,确保将新的放射生物学知识融入临床实践至关重要。本文以ESTRO近距离放射治疗会前课程(2024年5月3日 - 格拉斯哥ESTRO会议)为基础,深入阐述相关概念,对BT的放射生物学进行概述。文中介绍了三个不同的方面:BT放射生物学基础(BT放射生物学历史背景、生物学原理与BT、α/β比值与再程放疗)、临床前放射生物学方法(脉冲剂量放疗(PDR)与HDR、BT与最佳EBRT技术、高剂量区域与整合加量)以及临床放射生物学方法(BT的最佳分次次数、宫颈癌、前列腺癌、乳腺癌、皮肤/头颈部癌和胃肠道癌的BR放射生物学)。本文还分析了BT中的放射生物学及建模,有助于整合临床前和临床科学数据,从而更好地理解放射性源在癌症治疗中的应用。