Suppr超能文献

芳香族氨基酸代谢和主动运输调节与微生物在压裂页岩储层中的持久性有关。

Aromatic amino acid metabolism and active transport regulation are implicated in microbial persistence in fractured shale reservoirs.

作者信息

Ugwuodo Chika Jude, Colosimo Fabrizio, Adhikari Jishnu, Purvine Samuel O, Eder Elizabeth K, Hoyt David W, Wright Stephanie A, Lipton Mary S, Mouser Paula J

机构信息

Natural Resources and Earth Systems Science, University of New Hampshire, Durham, NH 03824, United States.

Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH 03824, United States.

出版信息

ISME Commun. 2024 Nov 26;4(1):ycae149. doi: 10.1093/ismeco/ycae149. eCollection 2024 Jan.

Abstract

Hydraulic fracturing has unlocked vast amounts of hydrocarbons trapped within unconventional shale formations. This large-scale engineering approach inadvertently introduces microorganisms into the hydrocarbon reservoir, allowing them to inhabit a new physical space and thrive in the unique biogeochemical resources present in the environment. Advancing our fundamental understanding of microbial growth and physiology in this extreme subsurface environment is critical to improving biofouling control efficacy and maximizing opportunities for beneficial natural resource exploitation. Here, we used metaproteomics and exometabolomics to investigate the biochemical mechanisms underpinning the adaptation of model bacterium WG10 and mixed microbial consortia enriched from shale-produced fluids to hypersalinity and very low reservoir flow rates (metabolic stress). We also queried the metabolic foundation for biofilm formation in this system, a major impediment to subsurface energy exploration. For the first time, we report that WG10 accumulates tyrosine for osmoprotection, an indication of the flexible robustness of stress tolerance that enables its long-term persistence in fractured shale environments. We also identified aromatic amino acid synthesis and cell wall maintenance as critical to biofilm formation. Finally, regulation of transmembrane transport is key to metabolic stress adaptation in shale bacteria under very low well flow rates. These results provide unique insights that enable better management of hydraulically fractured shale systems, for more efficient and sustainable energy extraction.

摘要

水力压裂技术已释放出被困在非常规页岩地层中的大量碳氢化合物。这种大规模工程方法无意间将微生物引入了碳氢化合物储层,使它们能够在新的物理空间中栖息,并在该环境中独特的生物地球化学资源中茁壮成长。深入了解这种极端地下环境中微生物的生长和生理特性,对于提高生物污垢控制效果以及最大限度地利用有益自然资源的机会至关重要。在此,我们使用宏蛋白质组学和胞外代谢组学来研究模式细菌WG10以及从页岩产出液中富集的混合微生物群落适应高盐度和极低储层流速(代谢应激)的生化机制。我们还探究了该系统中生物膜形成的代谢基础,生物膜形成是地下能源勘探的主要障碍。我们首次报告,WG10积累酪氨酸用于渗透保护,这表明其应激耐受性具有灵活的稳健性,使其能够在压裂页岩环境中长期存活。我们还确定芳香族氨基酸合成和细胞壁维持对生物膜形成至关重要。最后,跨膜运输的调节是极低油井流速下页岩细菌适应代谢应激的关键。这些结果提供了独特的见解,有助于更好地管理水力压裂页岩系统,以实现更高效和可持续的能源开采。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9487/11637423/bf3615720f43/ycae149f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验