Hussen Abdulmtalb
School of Engineering, Math, and Technology, Navajo Technical University, Lowerpoint Rd State Hwy 371, Crownpoint, 87313 NM, United States.
Heliyon. 2024 May 20;10(10):e31469. doi: 10.1016/j.heliyon.2024.e31469. eCollection 2024 May 30.
The Mittag-Leffler-type Borel distribution is widely recognized and utilized as a beneficial and pertinent model across numerous applications. This study presents a new subclass of normalized analytic bi-univalent functions that combines Gegenbauer polynomials and the Mittag-Leffler-type Borel distribution. Employing this subclass enables us to derive novel approximations for Taylor-Maclaurin coefficients, and , as well as delve into the investigation of the Fekete-Szegö functional. Additionally, we explore a variety of new findings that arise through the specialization of parameters in our primary results.
米塔格 - 莱夫勒型博雷尔分布作为一种有益且相关的模型,在众多应用中得到广泛认可和利用。本研究提出了一个归一化解析双单叶函数的新子类,它结合了盖根堡多项式和米塔格 - 莱夫勒型博雷尔分布。利用这个子类,我们能够推导出泰勒 - 麦克劳林系数(a_n)和(b_n)的新近似值,还能深入研究费克特 - 塞戈泛函。此外,我们通过对主要结果中的参数进行特殊化处理,探索了各种新发现。