Suppr超能文献

预测急性肾损伤幸存者肾病进展的生物标志物组合

Biomarker Panels for Predicting Progression of Kidney Disease in Acute Kidney Injury Survivors.

作者信息

Menez Steven, Kerr Kathleen F, Cheng Si, Hu David, Thiessen-Philbrook Heather, Moledina Dennis G, Mansour Sherry G, Go Alan S, Ikizler T Alp, Kaufman James S, Kimmel Paul L, Himmelfarb Jonathan, Coca Steven G, Parikh Chirag R

机构信息

Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.

Department of Biostatistics, University of Washington, Seattle, Washington.

出版信息

Clin J Am Soc Nephrol. 2025 Mar 1;20(3):337-345. doi: 10.2215/CJN.0000000622. Epub 2024 Dec 13.

Abstract

KEY POINTS

Clinical characteristics and biomarkers after hospital discharge can predict major adverse kidney events among AKI survivors. Clinical impact plots based on parsimonious prediction models illustrate the potential to optimize post-AKI care by identifying high-risk patients.

BACKGROUND

AKI increases the risk of CKD. We aimed to identify combinations of clinical variables and biomarkers that predict long-term kidney disease risk after AKI.

METHODS

We analyzed data from a prospective cohort of 723 hospitalized patients with AKI in the Assessment, Serial Evaluation, and Subsequent Sequelae of AKI study. Using machine learning, we investigated 75 candidate predictors including biomarkers measured at 3-month postdischarge follow-up to predict major adverse kidney events (MAKEs) within 3 years, defined as a decline in eGFR ≥40%, development of ESKD, or death.

RESULTS

The mean age of study participants was 64±13 years, 68% were male, and 79% were of White race. Two hundred four patients (28%) developed MAKEs over 3 years of follow-up. Random forest and least absolute shrinkage and selection operator penalized regression models using all 75 predictors yielded area under the receiver-operating characteristic curve (AUC) values of 0.80 (95% confidence interval [CI], 0.69 to 0.91) and 0.79 (95% CI, 0.68 to 0.90), respectively. The most consistently selected predictors were albuminuria, soluble TNF receptor-1, and diuretic use. A parsimonious model using the top eight predictor variables showed similarly strong discrimination for MAKEs (AUC, 0.78; 95% CI, 0.66 to 0.90). Clinical impact utility analyses demonstrated that the eight-predictor model would have 55% higher efficiency of post-AKI care (number needed to screen/follow-up for a MAKE decreased from 3.55 to 1.97). For a kidney-specific outcome of eGFR decline or ESKD, a four-predictor model showed strong discrimination (AUC, 0.82; 95% CI, 0.68 to 0.96).

CONCLUSIONS

Combining clinical data and biomarkers can accurately identify patients with high-risk AKI, enabling personalized post-AKI care and improved outcomes.

摘要

关键点

急性肾损伤(AKI)幸存者出院后的临床特征和生物标志物可预测主要不良肾脏事件。基于简约预测模型的临床影响图表明,通过识别高危患者,有可能优化急性肾损伤后的护理。

背景

急性肾损伤会增加慢性肾脏病(CKD)的风险。我们旨在确定可预测急性肾损伤后长期肾脏疾病风险的临床变量和生物标志物组合。

方法

我们分析了急性肾损伤评估、系列评估及后续后遗症(AKI-ASSESS)研究中723例住院急性肾损伤患者的前瞻性队列数据。使用机器学习,我们研究了75个候选预测指标,包括出院后3个月随访时测量的生物标志物,以预测3年内的主要不良肾脏事件(MAKEs),定义为估算肾小球滤过率(eGFR)下降≥40%、终末期肾病(ESKD)的发生或死亡。

结果

研究参与者的平均年龄为64±13岁,68%为男性,79%为白人。在3年的随访中,204例患者(28%)发生了主要不良肾脏事件。使用所有75个预测指标的随机森林模型和最小绝对收缩和选择算子惩罚回归模型的受试者工作特征曲线下面积(AUC)值分别为0.80(95%置信区间[CI],0.69至0.91)和0.79(95%CI,0.68至0.90)。最常被选中的预测指标是蛋白尿、可溶性肿瘤坏死因子受体-1和利尿剂的使用。使用前八个预测变量的简约模型对主要不良肾脏事件表现出同样强的区分能力(AUC,0.78;95%CI,0.66至0.90)。临床影响效用分析表明,八指标模型的急性肾损伤后护理效率将提高55%(发生主要不良肾脏事件所需筛查/随访的人数从3.55降至1.97)。对于估算肾小球滤过率下降或终末期肾病这一肾脏特异性结局,四指标模型表现出很强的区分能力(AUC,0.82;95%CI,0.68至0.96)。

结论

结合临床数据和生物标志物可以准确识别急性肾损伤高危患者,实现个性化的急性肾损伤后护理并改善结局。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验