Amezquita Jonathan, Desbois Muriel, Opperman Karla J, Pak Joseph S, Christensen Elyse L, Nguyen Nikki T, Diaz-Garcia Karen, Borgen Melissa A, Grill Brock
Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States of America.
Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America.
PLoS Genet. 2024 Dec 13;20(12):e1011496. doi: 10.1371/journal.pgen.1011496. eCollection 2024 Dec.
Integrin signaling plays important roles in development and disease. An adhesion signaling network called the integrin adhesome has been principally defined using bioinformatics and cell-based proteomics. To date, the adhesome has not been studied using integrated proteomic and genetic approaches. Here, proteomic studies in C. elegans identified physical associations between the RPM-1 ubiquitin ligase signaling hub and numerous adhesome components including Talin (TLN-1), Kindlin (UNC-112) and β-integrin (PAT-3). C. elegans RPM-1 is orthologous to human MYCBP2, a prominent player in nervous system development recently associated with a neurodevelopmental disorder. After curating and updating the conserved C. elegans adhesome, we identified an adhesome subnetwork physically associated with RPM-1 that has extensive links to human neurobehavioral abnormalities. Using neuron-specific, CRISPR loss-of-function strategies, we demonstrate that a PAT-3/UNC-112/TLN-1 adhesome axis regulates axon termination in mechanosensory neurons by inhibiting RPM-1. Developmental time-course studies and pharmacological results suggest TLN-1 inhibition of RPM-1 affects growth cone collapse and microtubule dynamics during axon outgrowth. These results indicate the PAT-3/UNC-112/TLN-1 adhesome axis restricts RPM-1 signaling to ensure axon outgrowth is terminated in a spatially and temporally accurate manner. Thus, our findings orthogonally validate the adhesome using an organismal setting, identify an adhesome axis that inhibits RPM-1 (MYCBP2), and highlight important new links between the adhesome and brain disorders.
整合素信号传导在发育和疾病中发挥着重要作用。一个名为整合素粘附体的粘附信号网络主要是通过生物信息学和基于细胞的蛋白质组学来定义的。迄今为止,尚未使用综合蛋白质组学和遗传学方法对粘附体进行研究。在这里,对秀丽隐杆线虫的蛋白质组学研究确定了RPM-1泛素连接酶信号枢纽与许多粘附体成分之间的物理关联,这些成分包括踝蛋白(TLN-1)、纽蛋白(UNC-112)和β-整合素(PAT-3)。秀丽隐杆线虫的RPM-1与人类MYCBP2直系同源,MYCBP2是神经系统发育中的一个重要参与者,最近与一种神经发育障碍相关。在整理和更新保守的秀丽隐杆线虫粘附体后,我们确定了一个与RPM-1物理相关的粘附体子网络,该网络与人类神经行为异常有广泛联系。使用神经元特异性的CRISPR功能丧失策略,我们证明PAT-3/UNC-112/TLN-1粘附体轴通过抑制RPM-1来调节机械感觉神经元中的轴突终止。发育时间进程研究和药理学结果表明,TLN-1对RPM-1的抑制作用会影响轴突生长过程中的生长锥塌陷和微管动力学。这些结果表明,PAT-3/UNC-112/TLN-1粘附体轴限制RPM-1信号传导,以确保轴突生长在空间和时间上准确终止。因此,我们的研究结果在生物体环境中正交验证了粘附体,确定了一个抑制RPM-1(MYCBP2)的粘附体轴,并突出了粘附体与脑部疾病之间重要的新联系。