Suppr超能文献

基于机器学习的钒酸铋/氧化钨异质结构痕量三乙胺识别

Machine learning-motivated trace triethylamine identification by bismuth vanadate/tungsten oxide heterostructures.

作者信息

Ding Wei, Feng Min, Zhang Ziqi, Fan Faying, Chen Long, Zhang Kewei

机构信息

College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, PR China; College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.

College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, PR China.

出版信息

J Colloid Interface Sci. 2025 Mar 15;682:1140-1150. doi: 10.1016/j.jcis.2024.12.028. Epub 2024 Dec 9.

Abstract

Triethylamine, an extensively used material in industrial organic synthesis, is hazardous to the human respiratory and nervous systems, but its accurate detection and prediction has been a long-standing challenge. Herein, a machine learning-motivated chemiresistive sensor that can predict ppm-level triethylamine is designed. The zero-dimensional (0D) bismuth vanadate (BiVO) nanoparticles were anchored on the surface of three-dimensional (3D) tungsten oxide (WO) architectures to form hierarchical BiVO/WO heterostructures, which demonstrates remarkable triethylamine-sensing performance such as high response of 21 (4 times higher than pristine WO) at optimal temperature of 190 °C, low detection limit of 57 ppb, long-term stability, reproducibility and good anti-interference property. Furthermore, an intelligent framework with good visibility was developed to identify ppm-level triethylamine and predict its definite concentration. Using feature parameters extracted from the sensor responses, the machine learning-based classifier provides a decision boundary with 92.3 % accuracy, and the prediction of unknown gas concentration was successfully achieved by linear regression model after training a series of as-known concentrations. This work not only provides a fundamental understanding of BiVO-based heterostructures in gas sensors but also offers an intelligent strategy to identify and predict trace triethylamine under an interfering atmosphere.

摘要

三乙胺是工业有机合成中广泛使用的一种物质,对人体呼吸系统和神经系统有害,但其准确检测和预测一直是一个长期存在的挑战。在此,设计了一种基于机器学习的化学电阻传感器,该传感器能够预测ppm级别的三乙胺。将零维(0D)钒酸铋(BiVO)纳米颗粒锚定在三维(3D)氧化钨(WO)结构表面,形成分级BiVO/WO异质结构,该结构展现出卓越的三乙胺传感性能,如在190℃的最佳温度下具有21的高响应(比原始WO高4倍)、57 ppb的低检测限、长期稳定性、可重复性和良好的抗干扰性能。此外,还开发了一个具有良好可视化效果的智能框架,用于识别ppm级别的三乙胺并预测其确切浓度。利用从传感器响应中提取的特征参数,基于机器学习的分类器提供了一个准确率为92.3%的决策边界,并且在对一系列已知浓度进行训练后,通过线性回归模型成功实现了对未知气体浓度的预测。这项工作不仅为气体传感器中基于BiVO的异质结构提供了基本认识,还提供了一种在干扰气氛下识别和预测痕量三乙胺的智能策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验