Francois Marie, Kaiser Laura, He Yanlin, Xu Yong, Salbaum J Michael, Yu Sangho, Morrison Christopher D, Berthoud Hans-Rudolf, Münzberg Heike
Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA.
Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA; Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
Metabolism. 2025 Feb;163:156100. doi: 10.1016/j.metabol.2024.156100. Epub 2024 Dec 12.
The dorsomedial hypothalamus (DMH) receives inputs from the preoptic area (POA), where ambient temperature mediates physiological adaptations of energy expenditure and food intake. Warm-activated POA neurons suppress energy expenditure via brown adipose tissue (BAT) projecting neurons in the dorsomedial hypothalamus/dorsal hypothalamic area (dDMH/DHA). Our earlier work identified leptin receptor (Lepr)-expressing, BAT-projecting dDMH/DHA neurons that mediate metabolic leptin effects. Yet, the neurotransmitter (glutamate or GABA) used by dDMH/DHA neurons remains unexplored and was investigated in this study using mice. We report that dDMH/DHA neurons represent equally glutamatergic and GABAergic neurons. Surprisingly, chemogenetic activation of glutamatergic and/or GABAergic dDMH/DHA neurons were capable to increase energy expenditure and locomotion, but neither reproduced the beneficial metabolic effects observed after chemogenetic activation of dDMH/DHA neurons. We clarify that BAT-projecting dDMH/DHA neurons that innervate the raphe pallidus (RPa) are exclusively glutamatergic Lepr neurons. In contrast, projections of GABAergic or dDMH/DHA neurons overlapped in the ventromedial arcuate nucleus (vmARC), suggesting distinct energy expenditure pathways. Brain slice patch clamp recordings further demonstrate a considerable proportion of leptin-inhibited dDMH/DHA neurons, while removal of pre-synaptic (indirect) effects with synaptic blocker increased the proportion of leptin-activated dDMH/DHA neurons, suggesting that pre-synaptic Lepr neurons inhibit dDMH/DHA neurons. We conclude that stimulation of BAT-related, GABA- and glutamatergic dDMH/DHA neurons in combination mediate the beneficial metabolic effects. Our data support the idea that dDMH/DHA neurons integrate upstream Lepr neurons (e.g., originating from POA and ARC). We speculate that these neurons manage dynamic adaptations to a variety of environmental changes including ambient temperature and energy state. SIGNIFICANCE STATEMENT: Our earlier work identified leptin receptor expressing neurons in the dDMH/DHA as an important thermoregulatory site. Dorsomedial hypothalamus (DMH) Lepr neurons participate in processing and integration of environmental exteroceptive signals like ambient temperature and circadian rhythm, as well as interoceptive signals including leptin and the gut hormone glucagon-like-peptide-1 (GLP1). The present work further characterizes dDMH/DHA neurons as a mixed glutamatergic and GABAergic population, but with distinct axonal projection sites. Surprisingly, select activation of glutamatergic and/or GABAergic populations are all able to increase energy expenditure, but are unable to replicate the beneficial metabolic effects observed by Lepr activation. These findings highlighting dDMH/DHA Lepr neurons as a distinct subgroup of glutamatergic and GABAergic neurons that are under indirect and direct influence of the interoceptive hormone leptin and if stimulated are uniquely capable to mediate beneficial metabolic effects. Our work significantly expands our knowledge of thermoregulatory circuits and puts a spotlight onto DMH-Lepr neurons for the integration into whole body energy and body weight homeostasis.
背内侧下丘脑(DMH)接收来自视前区(POA)的输入信号,其中环境温度介导能量消耗和食物摄入的生理适应性变化。温暖激活的POA神经元通过背内侧下丘脑/下丘脑背侧区(dDMH/DHA)中投射至棕色脂肪组织(BAT)的神经元来抑制能量消耗。我们早期的研究确定了表达瘦素受体(Lepr)、投射至BAT的dDMH/DHA神经元,这些神经元介导瘦素的代谢作用。然而,dDMH/DHA神经元所使用的神经递质(谷氨酸或γ-氨基丁酸)仍未明确,本研究使用小鼠对此进行了探究。我们报告称,dDMH/DHA神经元中谷氨酸能神经元和γ-氨基丁酸能神经元数量相当。令人惊讶的是,化学遗传学激活谷氨酸能和/或γ-氨基丁酸能dDMH/DHA神经元能够增加能量消耗和运动,但均未重现化学遗传学激活dDMH/DHA神经元后所观察到的有益代谢效应。我们明确指出,支配中缝苍白核(RPa)的投射至BAT的dDMH/DHA神经元均为谷氨酸能Lepr神经元。相反,γ-氨基丁酸能或dDMH/DHA神经元的投射在腹内侧弓状核(vmARC)重叠,提示存在不同的能量消耗途径。脑片膜片钳记录进一步显示,相当一部分dDMH/DHA神经元受瘦素抑制,而使用突触阻滞剂消除突触前(间接)效应可增加瘦素激活的dDMH/DHA神经元比例,这表明突触前Lepr神经元抑制dDMH/DHA神经元。我们得出结论,联合刺激与BAT相关的、γ-氨基丁酸能和谷氨酸能dDMH/DHA神经元可介导有益的代谢效应。我们的数据支持这样一种观点,即dDMH/DHA神经元整合上游Lepr神经元(例如,起源于POA和ARC的神经元)。我们推测,这些神经元管理对包括环境温度和能量状态在内的各种环境变化的动态适应。意义声明:我们早期的研究确定dDMH/DHA中表达瘦素受体的神经元是一个重要的体温调节位点。背内侧下丘脑(DMH)的Lepr神经元参与处理和整合环境外部感受信号,如环境温度和昼夜节律,以及内部感受信号,包括瘦素和肠道激素胰高血糖素样肽-1(GLP1)。目前的研究进一步将dDMH/DHA神经元表征为混合的谷氨酸能和γ-氨基丁酸能群体,但具有不同的轴突投射位点。令人惊讶地是,选择性激活谷氨酸能和/或γ-氨基丁酸能群体均能够增加能量消耗,但无法重现Lepr激活所观察到的有益代谢效应。这些发现突出了dDMH/DHA Lepr神经元作为谷氨酸能和γ-氨基丁酸能神经元的一个独特亚群,它们受到内部感受激素瘦素的间接和直接影响,并且如果受到刺激,能够独特地介导有益的代谢效应。我们的研究极大地扩展了我们对体温调节回路的认识,并将焦点放在DMH-Lepr神经元上,以便将其整合到全身能量和体重稳态中。