Suppr超能文献

下丘脑背内侧的瘦素受体神经元在产热和体重减轻方面需要不同的神经元亚群。

Leptin receptor neurons in the dorsomedial hypothalamus require distinct neuronal subsets for thermogenesis and weight loss.

作者信息

Francois Marie, Kaiser Laura, He Yanlin, Xu Yong, Salbaum J Michael, Yu Sangho, Morrison Christopher D, Berthoud Hans-Rudolf, Münzberg Heike

机构信息

Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA.

Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA; Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.

出版信息

Metabolism. 2025 Feb;163:156100. doi: 10.1016/j.metabol.2024.156100. Epub 2024 Dec 12.

Abstract

The dorsomedial hypothalamus (DMH) receives inputs from the preoptic area (POA), where ambient temperature mediates physiological adaptations of energy expenditure and food intake. Warm-activated POA neurons suppress energy expenditure via brown adipose tissue (BAT) projecting neurons in the dorsomedial hypothalamus/dorsal hypothalamic area (dDMH/DHA). Our earlier work identified leptin receptor (Lepr)-expressing, BAT-projecting dDMH/DHA neurons that mediate metabolic leptin effects. Yet, the neurotransmitter (glutamate or GABA) used by dDMH/DHA neurons remains unexplored and was investigated in this study using mice. We report that dDMH/DHA neurons represent equally glutamatergic and GABAergic neurons. Surprisingly, chemogenetic activation of glutamatergic and/or GABAergic dDMH/DHA neurons were capable to increase energy expenditure and locomotion, but neither reproduced the beneficial metabolic effects observed after chemogenetic activation of dDMH/DHA neurons. We clarify that BAT-projecting dDMH/DHA neurons that innervate the raphe pallidus (RPa) are exclusively glutamatergic Lepr neurons. In contrast, projections of GABAergic or dDMH/DHA neurons overlapped in the ventromedial arcuate nucleus (vmARC), suggesting distinct energy expenditure pathways. Brain slice patch clamp recordings further demonstrate a considerable proportion of leptin-inhibited dDMH/DHA neurons, while removal of pre-synaptic (indirect) effects with synaptic blocker increased the proportion of leptin-activated dDMH/DHA neurons, suggesting that pre-synaptic Lepr neurons inhibit dDMH/DHA neurons. We conclude that stimulation of BAT-related, GABA- and glutamatergic dDMH/DHA neurons in combination mediate the beneficial metabolic effects. Our data support the idea that dDMH/DHA neurons integrate upstream Lepr neurons (e.g., originating from POA and ARC). We speculate that these neurons manage dynamic adaptations to a variety of environmental changes including ambient temperature and energy state. SIGNIFICANCE STATEMENT: Our earlier work identified leptin receptor expressing neurons in the dDMH/DHA as an important thermoregulatory site. Dorsomedial hypothalamus (DMH) Lepr neurons participate in processing and integration of environmental exteroceptive signals like ambient temperature and circadian rhythm, as well as interoceptive signals including leptin and the gut hormone glucagon-like-peptide-1 (GLP1). The present work further characterizes dDMH/DHA neurons as a mixed glutamatergic and GABAergic population, but with distinct axonal projection sites. Surprisingly, select activation of glutamatergic and/or GABAergic populations are all able to increase energy expenditure, but are unable to replicate the beneficial metabolic effects observed by Lepr activation. These findings highlighting dDMH/DHA Lepr neurons as a distinct subgroup of glutamatergic and GABAergic neurons that are under indirect and direct influence of the interoceptive hormone leptin and if stimulated are uniquely capable to mediate beneficial metabolic effects. Our work significantly expands our knowledge of thermoregulatory circuits and puts a spotlight onto DMH-Lepr neurons for the integration into whole body energy and body weight homeostasis.

摘要

背内侧下丘脑(DMH)接收来自视前区(POA)的输入信号,其中环境温度介导能量消耗和食物摄入的生理适应性变化。温暖激活的POA神经元通过背内侧下丘脑/下丘脑背侧区(dDMH/DHA)中投射至棕色脂肪组织(BAT)的神经元来抑制能量消耗。我们早期的研究确定了表达瘦素受体(Lepr)、投射至BAT的dDMH/DHA神经元,这些神经元介导瘦素的代谢作用。然而,dDMH/DHA神经元所使用的神经递质(谷氨酸或γ-氨基丁酸)仍未明确,本研究使用小鼠对此进行了探究。我们报告称,dDMH/DHA神经元中谷氨酸能神经元和γ-氨基丁酸能神经元数量相当。令人惊讶的是,化学遗传学激活谷氨酸能和/或γ-氨基丁酸能dDMH/DHA神经元能够增加能量消耗和运动,但均未重现化学遗传学激活dDMH/DHA神经元后所观察到的有益代谢效应。我们明确指出,支配中缝苍白核(RPa)的投射至BAT的dDMH/DHA神经元均为谷氨酸能Lepr神经元。相反,γ-氨基丁酸能或dDMH/DHA神经元的投射在腹内侧弓状核(vmARC)重叠,提示存在不同的能量消耗途径。脑片膜片钳记录进一步显示,相当一部分dDMH/DHA神经元受瘦素抑制,而使用突触阻滞剂消除突触前(间接)效应可增加瘦素激活的dDMH/DHA神经元比例,这表明突触前Lepr神经元抑制dDMH/DHA神经元。我们得出结论,联合刺激与BAT相关的、γ-氨基丁酸能和谷氨酸能dDMH/DHA神经元可介导有益的代谢效应。我们的数据支持这样一种观点,即dDMH/DHA神经元整合上游Lepr神经元(例如,起源于POA和ARC的神经元)。我们推测,这些神经元管理对包括环境温度和能量状态在内的各种环境变化的动态适应。意义声明:我们早期的研究确定dDMH/DHA中表达瘦素受体的神经元是一个重要的体温调节位点。背内侧下丘脑(DMH)的Lepr神经元参与处理和整合环境外部感受信号,如环境温度和昼夜节律,以及内部感受信号,包括瘦素和肠道激素胰高血糖素样肽-1(GLP1)。目前的研究进一步将dDMH/DHA神经元表征为混合的谷氨酸能和γ-氨基丁酸能群体,但具有不同的轴突投射位点。令人惊讶地是,选择性激活谷氨酸能和/或γ-氨基丁酸能群体均能够增加能量消耗,但无法重现Lepr激活所观察到的有益代谢效应。这些发现突出了dDMH/DHA Lepr神经元作为谷氨酸能和γ-氨基丁酸能神经元的一个独特亚群,它们受到内部感受激素瘦素的间接和直接影响,并且如果受到刺激,能够独特地介导有益的代谢效应。我们的研究极大地扩展了我们对体温调节回路的认识,并将焦点放在DMH-Lepr神经元上,以便将其整合到全身能量和体重稳态中。

相似文献

1
Leptin receptor neurons in the dorsomedial hypothalamus require distinct neuronal subsets for thermogenesis and weight loss.
Metabolism. 2025 Feb;163:156100. doi: 10.1016/j.metabol.2024.156100. Epub 2024 Dec 12.
5
Direct pyrogenic input from prostaglandin EP3 receptor-expressing preoptic neurons to the dorsomedial hypothalamus.
Eur J Neurosci. 2005 Dec;22(12):3137-46. doi: 10.1111/j.1460-9568.2005.04515.x.
6
Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake.
Mol Metab. 2014 Aug 6;3(7):681-93. doi: 10.1016/j.molmet.2014.07.008. eCollection 2014 Oct.
7
TrkB-expressing neurons in the dorsomedial hypothalamus are necessary and sufficient to suppress homeostatic feeding.
Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):3256-3261. doi: 10.1073/pnas.1815744116. Epub 2019 Feb 4.
10
Loss of dorsomedial hypothalamic GLP-1 signaling reduces BAT thermogenesis and increases adiposity.
Mol Metab. 2018 May;11:33-46. doi: 10.1016/j.molmet.2018.03.008. Epub 2018 Mar 21.

引用本文的文献

2
Molecular mechanisms and neural mediators of leptin action.
Genes Dev. 2025 Jul 1;39(13-14):792-807. doi: 10.1101/gad.352550.124.
3
Glucagon-Like Peptide-1 and Hypothalamic Regulation of Satiation: Cognitive and Neural Insights from Human and Animal Studies.
Diabetes Metab J. 2025 May;49(3):333-347. doi: 10.4093/dmj.2025.0106. Epub 2025 May 1.

本文引用的文献

1
Negative feedback control of hypothalamic feeding circuits by the taste of food.
Neuron. 2024 Oct 9;112(19):3354-3370.e5. doi: 10.1016/j.neuron.2024.07.017. Epub 2024 Aug 16.
3
Suppression of food intake by Glp1r/Lepr-coexpressing neurons prevents obesity in mouse models.
J Clin Invest. 2023 Oct 2;133(19):e157515. doi: 10.1172/JCI157515.
6
Cold-induced hyperphagia requires AgRP neuron activation in mice.
Elife. 2020 Dec 15;9:e58764. doi: 10.7554/eLife.58764.
7
Flipping the switch on the body's thermoregulatory system.
Nature. 2020 Jul;583(7814):34-35. doi: 10.1038/d41586-020-01600-5.
8
Recent advances in understanding the role of leptin in energy homeostasis.
F1000Res. 2020 May 27;9. doi: 10.12688/f1000research.24260.1. eCollection 2020.
9
Estrogen receptor-α expressing neurons in the ventrolateral VMH regulate glucose balance.
Nat Commun. 2020 May 1;11(1):2165. doi: 10.1038/s41467-020-15982-7.
10
Comprehensive Integration of Single-Cell Data.
Cell. 2019 Jun 13;177(7):1888-1902.e21. doi: 10.1016/j.cell.2019.05.031. Epub 2019 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验