Han Shenjie, Li Jingpeng, Zang Jian, Ding Qingyun, Yu Zhichao, Lu Yun
Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China; National Forestry and Grassland Administration, Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, PR China.
Int J Biol Macromol. 2025 Jan;287:138655. doi: 10.1016/j.ijbiomac.2024.138655. Epub 2024 Dec 11.
Incorporating phase change materials (PCM) into three-dimensional porous network structures could effectively address the leakage problem. In this study, by investigating the effects of different cellulose nanofibrils (CNF) contents on the mechanical and thermal properties of polyethylene glycol (PEG)/CNF/waterborne polyurethane (WPU) phase change foams, a series of leak-proof, lightweight, and stable PEG/CNF/WPU phase change foams were synthesized. Utilizing CNFs as porous support materials could effectively mitigate the leakage of PCMs. Meanwhile, the incorporation of WPU dispersions leads to the formation of CNFs/WPU composite network structure, which enhances the mechanical strength of the phase change foams and further reduces the leakage of PEG. The morphological, crystallographic, chemical, mechanical, and thermal characteristics of PEG/CNF/WPU phase change foams with varying CNF concentrations were comprehensively assessed using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), mechanical testing, and differential Scanning calorimetry (DSC). The research results indicate that phase change latent heat of PEG/CNF/WPU phase change foam containing 0.8 wt% CNF reached 150.54 J·g and demonstrated superior compressive strength, compressive yield stress, and compressive modulus with a remarkably low leakage rate of just 8.57 % after enduring a 30-day leakage test.
将相变材料(PCM)纳入三维多孔网络结构可以有效解决泄漏问题。在本研究中,通过研究不同纤维素纳米纤维(CNF)含量对聚乙二醇(PEG)/CNF/水性聚氨酯(WPU)相变泡沫材料的力学和热性能的影响,合成了一系列防漏、轻质且稳定的PEG/CNF/WPU相变泡沫材料。利用CNF作为多孔支撑材料可以有效减轻PCM的泄漏。同时,WPU分散体的加入导致形成CNF/WPU复合网络结构,增强了相变泡沫材料的机械强度,并进一步减少了PEG的泄漏。使用场发射扫描电子显微镜(FE-SEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、热重分析(TGA)、力学测试和差示扫描量热法(DSC)对不同CNF浓度的PEG/CNF/WPU相变泡沫材料的形态、晶体结构、化学、力学和热特性进行了全面评估。研究结果表明,含有0.8 wt% CNF的PEG/CNF/WPU相变泡沫材料的相变潜热达到150.54 J·g,具有优异的抗压强度、抗压屈服应力和压缩模量,在经过30天的泄漏测试后,泄漏率极低,仅为8.57%。