Frazão Cláudio J R, Wagner Nils, Nguyen T A Stefanie, Walther Thomas
Institute of Natural Materials Technology, TU Dresden, 01062, Dresden, Germany.
Institute of Natural Materials Technology, TU Dresden, 01062, Dresden, Germany.
Metab Eng. 2025 Mar;88:50-62. doi: 10.1016/j.ymben.2024.12.002. Epub 2024 Dec 11.
Ethylene glycol is a promising substrate for bioprocesses which can be derived from widely abundant CO or plastic waste. In this work, we describe the construction of an eight-step synthetic metabolic pathway enabling carbon-conserving biosynthesis of threonine from ethylene glycol. This route extends the previously disclosed synthetic threose-dependent glycolaldehyde assimilation (STEGA) pathway for the synthesis of 2-oxo-4-hydroxybutyrate with three additional reaction steps catalyzed by homoserine transaminase, homoserine kinase, and threonine synthase. We first validated the functionality of the new pathway in an Escherichia coli strain auxotrophic for threonine, which was also employed for discovering a better-performing D-threose dehydrogenase enzyme activity. Subsequently, we transferred the pathway to producer strains and used C-tracer experiments to improve threonine biosynthesis starting from glycolaldehyde. Finally, extending the pathway for ethylene glycol assimilation resulted in the production of up to 6.5 mM (or 0.8 g L) threonine by optimized E. coli strains at a yield of 0.10 mol mol (corresponding to 20 % of the theoretical yield).
乙二醇是一种很有前景的生物工艺底物,它可以从广泛存在的一氧化碳或塑料废料中获得。在这项工作中,我们描述了一种八步合成代谢途径的构建,该途径能够实现从乙二醇中进行碳守恒生物合成苏氨酸。这条路线扩展了先前公开的用于合成2-氧代-4-羟基丁酸的依赖于合成苏糖的乙醇醛同化(STEGA)途径,增加了由高丝氨酸转氨酶、高丝氨酸激酶和苏氨酸合酶催化的三个额外反应步骤。我们首先在一株苏氨酸营养缺陷型大肠杆菌菌株中验证了新途径的功能,该菌株也被用于发现一种性能更好的D-苏糖脱氢酶活性。随后,我们将该途径转移到生产菌株中,并使用碳示踪实验来改进从乙醇醛开始的苏氨酸生物合成。最后,扩展乙二醇同化途径使得优化后的大肠杆菌菌株能够产生高达6.5 mM(或0.8 g/L)的苏氨酸,产率为0.10 mol/mol(相当于理论产率的20%)。