Wong Justina, Kriegler Conley, Shrivastava Ananya, Duimering Adele, Le Connie
Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
Division of Radiation Oncology, Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave, Edmonton, AB, T6G 1Z2, Canada.
J Cancer Educ. 2024 Dec 14. doi: 10.1007/s13187-024-02547-1.
Artificial intelligence and natural language processing tools have shown promise in oncology by assisting with medical literature retrieval and providing patient support. The potential for these technologies to generate inaccurate yet seemingly correct information poses significant challenges. This study evaluates the effectiveness, benefits, and limitations of ChatGPT for clinical use in conducting literature reviews of radiation oncology treatments. This cross-sectional study used ChatGPT version 3.5 to generate literature searches on radiotherapy options for seven tumor sites, with prompts issued five times per site to generate up to 50 publications per tumor type. The publications were verified using the Scopus database and categorized as correct, irrelevant, or non-existent. Statistical analysis with one-way ANOVA compared the impact factors and citation counts across different tumor sites. Among the 350 publications generated, there were 44 correct, 298 non-existent, and 8 irrelevant papers. The average publication year of all generated papers was 2011, compared to 2009 for the correct papers. The average impact factor of all generated papers was 38.8, compared to 113.8 for the correct papers. There were significant differences in the publication year, impact factor, and citation counts between tumor sites for both correct and non-existent papers. Our study highlights both the potential utility and significant limitations of using AI, specifically ChatGPT 3.5, in radiation oncology literature reviews. The findings emphasize the need for verification of AI outputs, development of standardized quality assurance protocols, and continued research into AI biases to ensure reliable integration into clinical practice.
人工智能和自然语言处理工具在肿瘤学领域已展现出前景,可辅助医学文献检索并提供患者支持。然而,这些技术产生不准确但看似正确信息的可能性带来了重大挑战。本研究评估了ChatGPT在放射肿瘤治疗文献综述临床应用中的有效性、益处和局限性。这项横断面研究使用ChatGPT 3.5版本对七个肿瘤部位的放射治疗方案进行文献检索,每个部位发出五次提示,以生成每种肿瘤类型多达50篇出版物。使用Scopus数据库对这些出版物进行验证,并分类为正确、不相关或不存在。采用单因素方差分析进行统计分析,比较不同肿瘤部位的影响因子和引用次数。在生成的350篇出版物中,有44篇正确,298篇不存在,8篇不相关。所有生成论文的平均发表年份为2011年,而正确论文的平均发表年份为2009年。所有生成论文的平均影响因子为38.8,而正确论文的平均影响因子为113.8。正确论文和不存在论文在不同肿瘤部位的发表年份、影响因子和引用次数方面均存在显著差异。我们的研究突出了在放射肿瘤学文献综述中使用人工智能(特别是ChatGPT 3.5)的潜在效用和重大局限性。研究结果强调了对人工智能输出进行验证的必要性、制定标准化质量保证协议以及持续研究人工智能偏差,以确保可靠地融入临床实践。