Suppr超能文献

利用机器学习诊断复杂的声音嘶哑病例。

Harnessing machine learning in diagnosing complex hoarseness cases.

作者信息

Roitman Ariel, Edelstain Yiftach, Katzir Chen, Ofir Hadas, Peleg Nimrod, Doweck Ilana, Yanir Yoav

机构信息

Carmel Medical Center, Department of Otolaryngology - Head and Neck Surgery, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.

Signal and Image Processing Laboratory (SIPL), Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology, Israel.

出版信息

Am J Otolaryngol. 2025 Jan-Feb;46(1):104533. doi: 10.1016/j.amjoto.2024.104533. Epub 2024 Dec 4.

Abstract

PURPOSE

Traditional vocal fold pathology recognition typically requires expertise of laryngologists and advanced instruments, primarily through direct visualization. This study aims to augment this conventional paradigm by introducing a parallel diagnostic procedure. Our objective is to harness a machine-learning algorithm designed to discern intricate patterns within patients' voice recordings to distinguish not only between healthy and hoarse voices but also among various specific disorders.

MATERIALS AND METHODS

We employed a machine-learning algorithm, utilizing transfer learning on the HuBERT model with Saarbruecken Voice Database samples. The study was conducted in two stages: a binary classifier distinguishes healthy and hoarse voices, while a subsequent multi-class classifier identifies specific voice disorders. Data from 2103 sessions, including over 25,000 components, representing diverse pathologies and healthy individuals, was analyzed. The models were trained, validated, and tested with a focus on robustness and accuracy in diagnosis.

RESULTS

The binary classifier achieved 82 % accuracy in distinguishing healthy from pathological voices. The multi-class algorithm which aims to identify specific laryngeal disorders obtained the highest accuracy (>93 %) for Laryngeal Dystonia. Noteworthy is the persistent challenge posed by Laryngeal Dystonia, a condition lacking a definitive diagnostic modality.

CONCLUSIONS

Our findings demonstrate the feasibility of utilizing machine-learning algorithms to process voice samples, categorizing them into distinct pathologies. This approach holds potential for enhance patient triage, streamline diagnostics, and elevate overall patient care. Particularly valuable for challenging diagnoses, such as Laryngeal Dystonia, this method underscores the transformative role of machine learning in optimizing healthcare practices.

摘要

目的

传统的声带病变识别通常需要喉科医生的专业知识和先进仪器,主要通过直接可视化进行。本研究旨在通过引入一种并行诊断程序来扩充这一传统模式。我们的目标是利用一种机器学习算法,该算法旨在识别患者语音记录中的复杂模式,不仅要区分健康嗓音和嘶哑嗓音,还要区分各种特定疾病。

材料与方法

我们采用了一种机器学习算法,在HuBERT模型上利用迁移学习以及萨尔布吕肯语音数据库样本。该研究分两个阶段进行:一个二元分类器区分健康嗓音和嘶哑嗓音,随后的多分类器识别特定的嗓音疾病。分析了来自2103个会话的数据,包括超过25000个成分,代表了不同的病理情况和健康个体。对模型进行了训练、验证和测试,重点关注诊断的稳健性和准确性。

结果

二元分类器在区分健康嗓音和病理性嗓音方面的准确率达到82%。旨在识别特定喉部疾病的多分类算法在肌张力障碍性喉病方面获得了最高准确率(>93%)。值得注意的是,肌张力障碍性喉病带来了持续的挑战,这是一种缺乏明确诊断方式的疾病。

结论

我们的研究结果证明了利用机器学习算法处理语音样本、将其分类为不同病理情况的可行性。这种方法在改善患者分诊、简化诊断和提升整体患者护理方面具有潜力。对于诸如肌张力障碍性喉病等具有挑战性的诊断尤其有价值,这种方法强调了机器学习在优化医疗实践中的变革性作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验