Suppr超能文献

运用可解释机器学习分析大学生运动意向与行为之间的差距。

Analysis of the exercise intention-behavior gap among college students using explainable machine learning.

作者信息

Cui Cui, Yin Jixin

机构信息

Department of Sports, Huanghe Jiaotong University, Jiaozuo, Henan, China.

Gangneung Wonju University, Gangneung, Gangwon Province, Republic of Korea.

出版信息

Front Public Health. 2025 Jul 25;13:1613553. doi: 10.3389/fpubh.2025.1613553. eCollection 2025.

Abstract

INTRODUCTION

The physical fitness of college students is a growing global public health concern. A critical challenge in improving student fitness is addressing the intention-behavior gap-the disconnect between students' intentions to engage in physical activity and their actual behavior.

METHODS

This study utilized survey data from TikTok-using college students, incorporating variables such as gender, academic grade, health belief perceptions, and planned behavior perceptions. Multiple machine learning models were developed to predict the presence of the intention-behavior gap. The performance of these models was evaluated, and SHapley Additive exPlanations (SHAP) was applied to the best-performing model to interpret feature importance.

RESULTS

Among the models tested, SHAP analysis revealed that perceived barriers were the most influential factor contributing to the intention-behavior gap. Furthermore, the results indicated that male students in higher academic grades, with fewer perceived barriers and stronger subjective norms regarding physical activity, were significantly less likely to exhibit this gap.

DISCUSSION

These findings suggest that university health promotion strategies should focus on reducing perceived barriers, cultivating a supportive campus environment for physical activity, and optimizing the allocation of physical education resources. Such measures may effectively support the transformation of students' physical activity intentions into consistent, health-promoting behaviors.

摘要

引言

大学生的身体素质是一个日益受到全球关注的公共卫生问题。提高学生身体素质的一个关键挑战是解决意图-行为差距,即学生参与体育活动的意图与他们的实际行为之间的脱节。

方法

本研究利用了来自使用TikTok的大学生的调查数据,纳入了性别、学业成绩、健康信念认知和计划行为认知等变量。开发了多个机器学习模型来预测意图-行为差距的存在。对这些模型的性能进行了评估,并将SHapley加法解释(SHAP)应用于表现最佳的模型以解释特征重要性。

结果

在测试的模型中,SHAP分析表明,感知到的障碍是导致意图-行为差距的最有影响力的因素。此外,结果表明,学业成绩较高、感知到的障碍较少且对体育活动有更强主观规范的男学生表现出这种差距的可能性显著较低。

讨论

这些发现表明,大学健康促进策略应侧重于减少感知到的障碍,营造支持体育活动的校园环境,并优化体育教育资源的分配。这些措施可能有效地支持将学生的体育活动意图转变为一致的、促进健康的行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c7f/12331686/80ca9cdcd51e/fpubh-13-1613553-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验