Stadter Janina, Hoess Andreas, Leemhuis Hans, Herrera Aaron, Günther Rebecca, Cho Simone, Diederich Stephanie, Korus Gabriela, Richter Richard Frank, Petersen Ansgar
Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany; Berlin-Brandenburg School for Regenerative Therapies at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany.
INNOTERE GmbH, Meißner Str. 191, Radebeul 01445, Germany.
Acta Biomater. 2025 Jan 15;192:260-278. doi: 10.1016/j.actbio.2024.12.029. Epub 2024 Dec 12.
Regeneration of large bone defects remains a clinical challenge until today. While existing biomaterials are predominantly addressing bone healing via direct, intramembranous ossification (IO), bone tissue formation via a cartilage phase, so-called endochondral ossification (EO) has been shown to be a promising alternative strategy. However, pure biomaterial approaches for EO induction are sparse and the knowledge how material components can have bioactive contribution to the required cartilage formation is limited. Here, we combined a previously developed purely architecture-driven biomaterial approach with the release of therapeutic metal ions from tailored silicate microparticles. The delivery platform was free of calcium phosphates (CaP) that are known to support IO but not EO and was employed for the release of lithium (Li), magnesium (Mg), strontium (Sr) or zinc (Zn) ions. We identified an ion-specific cellular response in which certain metal ions strongly enhanced cell recruitment into the material and showed superior chondrogenesis and deposition collagen II by human mesenchymal stromal cells (MSCs). At the same time, in some cases microparticle incorporation altered the mechanical properties of the biomaterial with consequences for cell-induced biomaterial contraction and scaffold wall deformation. Collectively, the results suggest that the incorporation of metal-doped silicate microparticles has the potential to further improve the bioactivity of architectured biomaterials for bone defect healing via EO. STATEMENT OF SIGNIFICANCE: Endochondral bone healing, a process that resembles embryonic skeletal development, has gained prominence in regenerative medicine. However, most therapeutic biomaterial strategies are not optimized for endochondral bone healing but instead target direct bone formation through IO. Here, we report on a novel approach to accelerate biomaterial-guided endochondral bone healing by combining cell-guiding collagen scaffolds with therapeutic metal-doped silicate microparticles. While other strategies, such as hypoxia-mimic drugs and iron-chelating biomaterials, have been documented in the literature before to enhance EO, our approach uniquely implements enhanced bioactivity into a previously developed biomaterial strategy for bone defect regeneration. Enhanced cell recruitment into the material and more pronounced chondrogenesis were observed for specific hybrid scaffold formulations, suggesting a high relevance of this new biomaterial for improved endochondral bone healing.
直至今日,大骨缺损的再生仍是一项临床挑战。虽然现有的生物材料主要通过直接的膜内成骨(IO)来促进骨愈合,但通过软骨阶段形成骨组织,即所谓的软骨内成骨(EO),已被证明是一种很有前景的替代策略。然而,用于诱导EO的纯生物材料方法很少,而且关于材料成分如何对所需的软骨形成产生生物活性作用的知识也很有限。在此,我们将先前开发的纯粹由结构驱动的生物材料方法与从定制的硅酸盐微粒中释放治疗性金属离子相结合。该递送平台不含已知支持IO但不支持EO的磷酸钙(CaP),并用于释放锂(Li)、镁(Mg)、锶(Sr)或锌(Zn)离子。我们确定了一种离子特异性细胞反应,其中某些金属离子强烈增强了细胞向材料中的募集,并显示出人类间充质基质细胞(MSC)具有卓越的软骨生成和II型胶原蛋白沉积能力。同时,在某些情况下,微粒的掺入改变了生物材料的力学性能,对细胞诱导的生物材料收缩和支架壁变形产生了影响。总体而言,结果表明掺入金属掺杂的硅酸盐微粒有可能进一步改善用于通过EO修复骨缺损的结构化生物材料的生物活性。意义声明:软骨内骨愈合是一个类似于胚胎骨骼发育的过程,在再生医学中已受到关注。然而,大多数治疗性生物材料策略并非针对软骨内骨愈合进行优化,而是通过IO靶向直接骨形成。在此,我们报告一种通过将引导细胞的胶原蛋白支架与治疗性金属掺杂的硅酸盐微粒相结合来加速生物材料引导的软骨内骨愈合的新方法。虽然之前文献中已记载了其他策略,如模拟缺氧药物和铁螯合生物材料来增强EO,但我们的方法独特地将增强的生物活性应用于先前开发的用于骨缺损再生的生物材料策略中。对于特定的混合支架配方,观察到细胞向材料中的募集增强以及更明显的软骨生成,这表明这种新型生物材料对于改善软骨内骨愈合具有高度相关性。