Suppr超能文献

海洋珊瑚微粒与基于胶原蛋白的支架的结合通过钙离子信号促进人间充质基质细胞的成骨作用。

The Incorporation of Marine Coral Microparticles into Collagen-Based Scaffolds Promotes Osteogenesis of Human Mesenchymal Stromal Cells via Calcium Ion Signalling.

机构信息

Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland.

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland.

出版信息

Mar Drugs. 2020 Jan 23;18(2):74. doi: 10.3390/md18020074.

Abstract

Composite biomaterial scaffolds consisting of natural polymers and bioceramics may offer an alternative to autologous grafts for applications such as bone repair. Herein, we sought to investigate the possibility of incorporating marine coral microparticles into a collagen-based scaffold, a process which we hypothesised would enhance the mechanical properties of the scaffold as well its capacity to promote osteogenesis of human mesenchymal stromal cells. Cryomilling and sieving were utilised to achieve coral microparticles of mean diameters 14 µm and 64 µm which were separately incorporated into collagen-based slurries and freeze-dried to form porous scaffolds. X-ray diffraction and Fourier transform infrared spectroscopy determined the coral microparticles to be comprised of calcium carbonate whereas collagen/coral composite scaffolds were shown to have a crystalline calcium ethanoate structure. Crosslinked collagen/coral scaffolds demonstrated enhanced compressive properties when compared to collagen only scaffolds and also promoted more robust osteogenic differentiation of mesenchymal stromal cells, as indicated by increased expression of bone morphogenetic protein 2 at the gene level, and enhanced alkaline phosphatase activity and calcium accumulation at the protein level. Only subtle differences were observed when comparing the effect of coral microparticles of different sizes, with improved osteogenesis occurring as a result of calcium ion signalling delivered from collagen/coral composite scaffolds. These scaffolds, fabricated from entirely natural sources, therefore show promise as novel biomaterials for tissue engineering applications such as bone regeneration.

摘要

由天然聚合物和生物陶瓷组成的复合材料生物支架可为骨修复等应用提供自体移植物的替代方案。在此,我们试图研究将海洋珊瑚微粒纳入基于胶原蛋白的支架中的可能性,我们假设这一过程将增强支架的机械性能及其促进人间充质基质细胞成骨的能力。冷冻研磨和筛分用于获得平均直径为 14 µm 和 64 µm 的珊瑚微粒,它们分别被纳入基于胶原蛋白的浆料中并冷冻干燥以形成多孔支架。X 射线衍射和傅里叶变换红外光谱确定珊瑚微粒由碳酸钙组成,而胶原蛋白/珊瑚复合材料支架具有结晶的乙酸钙结构。交联的胶原蛋白/珊瑚支架与仅含胶原蛋白的支架相比,表现出增强的压缩性能,并且还促进了间充质基质细胞更健壮的成骨分化,这表现为在基因水平上骨形态发生蛋白 2 的表达增加,以及在蛋白质水平上碱性磷酸酶活性和钙积累增强。当比较不同大小的珊瑚微粒的效果时,仅观察到细微差异,由于从胶原蛋白/珊瑚复合材料支架中传递的钙离子信号,从而改善了成骨作用。这些支架完全由天然来源制成,因此有望成为用于组织工程应用(如骨再生)的新型生物材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d61/7073845/587cdc145434/marinedrugs-18-00074-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验