Shen Bowen, Zhou Fei, Nemes Peter
Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland, USA.
Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland, USA.
Mol Cell Proteomics. 2025 Feb;24(2):100892. doi: 10.1016/j.mcpro.2024.100892. Epub 2024 Dec 19.
Detection of trace-sensitive signals is a current challenge in single-cell mass spectrometry (MS) proteomics. Separation prior to detection improves the fidelity and depth of proteome identification and quantification. We recently recognized capillary electrophoresis (CE) electrospray ionization (ESI) for ordering peptides into mass-to-charge (m/z)-dependent series, introducing electrophoresis-correlative (Eco) data-independent acquisition. Here, we demonstrate that these correlations based on electrophoretic mobility (μ) in the liquid phase are transferred into the gas phase, essentially temporally sorting the peptide ions into charge-dependent ion mobility (IM, 1/K) trends (ρ > 0.97). Rather than sampling the entire IM region broadly, we pursued these predictable correlations to schedule narrower frames. Compared to classical data-dependent (dda) PASEF, Eco-framing significantly enhanced the resolution of IM MS (IMS) on a trapped IM mass spectrometer (timsTOF PRO). This approach returned ∼50% more proteins from HeLa proteome digests approximating to one-to-two cells, identifying ∼962 proteins from ∼200 pg in <20 min of effective electrophoresis, without match-between-runs. As a proof of principle, we deployed Eco-IMS to detect 1157 proteins by analyzing <4% of the total proteome content in single, yolk-laden embryonic stem cells (∼80-μm) that were isolated from the animal cap of the South African clawed frog (Xenopus laevis). Quantitative profiling of nine different blastomeres revealed detectable differences among these cells, which are normally fated to form the ectoderm but retain pluripotentiality. Eco-framing in the IM dimension effectively deepens the proteome sensitivity in IMS using ddaPASEF, facilitating the proteome-driven classification of differentiating cells, as demonstrated in the chordate frog embryo in this report.
痕量敏感信号的检测是单细胞质谱蛋白质组学当前面临的一项挑战。检测前进行分离可提高蛋白质组鉴定和定量的保真度及深度。我们最近认识到毛细管电泳(CE)电喷雾电离(ESI)可将肽按质荷比(m/z)依赖性序列排序,引入了与电泳相关的(Eco)数据非依赖采集法。在此,我们证明基于液相中电泳迁移率(μ)的这些相关性会转移到气相中,本质上是将肽离子按电荷依赖性离子淌度(IM,1/K)趋势进行时间排序(ρ > 0.97)。我们并非广泛采样整个IM区域,而是利用这些可预测的相关性来安排更窄的帧。与经典的数据依赖型(dda)PASEF相比,Eco帧显著提高了捕获式IM质谱仪(timsTOF PRO)上IM MS(IMS)的分辨率。这种方法从近似一到两个细胞的HeLa蛋白质组消化物中鉴定出的蛋白质多出约50%,在不到20分钟的有效电泳时间内,从约200 pg中鉴定出约96两千六百种蛋白质,且无需运行间匹配。作为原理验证,我们通过分析从南非爪蟾(非洲爪蟾)动物帽中分离出的单个、富含卵黄的胚胎干细胞(约80μm)中不到4%的总蛋白质组含量,利用Eco-IMS检测到1157种蛋白质。对九个不同卵裂球的定量分析揭示了这些细胞之间可检测到的差异,这些细胞通常注定会形成外胚层但仍保留多能性。本报告中在脊索动物蛙胚胎中证明,在IM维度上进行Eco帧可有效提高使用ddaPASEF的IMS中蛋白质组的灵敏度,有助于对分化细胞进行蛋白质组驱动的分类。