Suppr超能文献

多发性骨髓瘤中[F]FDG PET/CT的放射组学与人工智能全景

Radiomics and Artificial Intelligence Landscape for [F]FDG PET/CT in Multiple Myeloma.

作者信息

Sachpekidis Christos, Goldschmidt Hartmut, Edenbrandt Lars, Dimitrakopoulou-Strauss Antonia

机构信息

Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Internal Medicine V, Hematology, Oncology and Rheumatology, German-Speaking Myeloma Multicenter Group (GMMG), Heidelberg University Hospital, Heidelberg, Germany.

出版信息

Semin Nucl Med. 2025 May;55(3):387-395. doi: 10.1053/j.semnuclmed.2024.11.005. Epub 2024 Dec 13.

Abstract

[F]FDG PET/CT is a powerful imaging modality of high performance in multiple myeloma (MM) and is considered the appropriate method for assessing treatment response in this disease. On the other hand, due to the heterogeneous and sometimes complex patterns of bone marrow infiltration in MM, the interpretation of PET/CT can be particularly challenging, hampering interobserver reproducibility and limiting the diagnostic and prognostic ability of the modality. Although many approaches have been developed to address the issue of standardization, none can yet be considered a standard method for interpretation or objective quantification of PET/CT. Therefore, advanced diagnostic quantification approaches are needed to support and potentially guide the management of MM. In recent years, radiomics has emerged as an innovative method for high-throughput mining of image-derived features for clinical decision making, which may be particularly helpful in oncology. In addition, machine learning and deep learning, both subfields of artificial intelligence (AI) closely related to the radiomics process, have been increasingly applied to automated image analysis, offering new possibilities for a standardized evaluation of imaging modalities such as CT, PET/CT and MRI in oncology. In line with this, the initial but steadily growing literature on the application of radiomics and AI-based methods in the field of [F]FDG PET/CT in MM has already yielded encouraging results, offering a potentially reliable tool towards optimization and standardization of interpretation in this disease. The main results of these studies are presented in this review.

摘要

[F]氟代脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(FDG PET/CT)是一种用于多发性骨髓瘤(MM)的高性能成像模态,被认为是评估该疾病治疗反应的合适方法。另一方面,由于MM中骨髓浸润模式的异质性以及有时的复杂性,PET/CT的解读可能特别具有挑战性,这妨碍了观察者间的可重复性,并限制了该模态的诊断和预后能力。尽管已经开发了许多方法来解决标准化问题,但尚无一种方法可被视为PET/CT解读或客观量化的标准方法。因此,需要先进的诊断量化方法来支持并潜在地指导MM的管理。近年来,放射组学已成为一种创新方法,用于高通量挖掘图像衍生特征以进行临床决策,这在肿瘤学中可能特别有帮助。此外,机器学习和深度学习作为与放射组学过程密切相关的人工智能(AI)的两个子领域,已越来越多地应用于自动图像分析,为肿瘤学中CT、PET/CT和MRI等成像模态的标准化评估提供了新的可能性。与此一致的是,关于放射组学和基于AI的方法在MM的[F]FDG PET/CT领域应用的初步但不断增长的文献已经产生了令人鼓舞的结果,为优化和标准化该疾病的解读提供了一种潜在可靠的工具。这些研究的主要结果在本综述中呈现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验