Lee Hyeryeong, Reginald Stacy Simai, Sravan J Shanthi, Lee Mungyu, Chang In Seop
School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Professorship for Electrobiotechnology, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing 94315, Germany.
Trends Biotechnol. 2025 Jun;43(6):1328-1355. doi: 10.1016/j.tibtech.2024.11.015. Epub 2024 Dec 14.
Advances in protein engineering-enabled enzyme immobilization technologies have significantly improved enzyme-electrode wiring in enzymatic electrochemical systems, which harness natural biological machinery to either generate electricity or synthesize biochemicals. In this review, we provide guidelines for designing enzyme-electrodes, focusing on how performance variables change depending on electron transfer (ET) mechanisms. Recent advancements in enzyme immobilization technologies are summarized, highlighting their contributions to extending enzyme-electrode sustainability (up to months), enhancing biosensor sensitivity, improving biofuel cell performance, and setting a new benchmark for turnover frequency in bioelectrocatalysis. We also highlight state-of-the-art protein-engineering approaches that enhance enzyme-electrode interfacing through three key principles: protein-protein, protein-ligand, and protein-inorganic interactions. Finally, we discuss prospective avenues in strategic protein design for real-world applications.
蛋白质工程使能的酶固定化技术的进展显著改善了酶电化学系统中的酶-电极连接,该系统利用天然生物机制来发电或合成生物化学物质。在本综述中,我们提供了设计酶电极的指导方针,重点关注性能变量如何根据电子转移(ET)机制而变化。总结了酶固定化技术的最新进展,突出了它们在延长酶电极可持续性(长达数月)、提高生物传感器灵敏度、改善生物燃料电池性能以及为生物电催化中的周转频率设定新基准方面的贡献。我们还强调了通过蛋白质-蛋白质、蛋白质-配体和蛋白质-无机相互作用这三个关键原则增强酶-电极界面的最新蛋白质工程方法。最后,我们讨论了用于实际应用的战略蛋白质设计的潜在途径。