Jamshidnejad-Tosaramandani Tahereh, Kashanian Soheila, Omidfar Kobra, Schiöth Helgi B
Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran.
Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 75124 Uppsala, Sweden.
Biosensors (Basel). 2025 Jul 14;15(7):451. doi: 10.3390/bios15070451.
The increasing prevalence of diabetes mellitus necessitates the development of advanced glucose-monitoring systems that are non-invasive, reliable, and capable of real-time analysis. Wearable electrochemical biosensors have emerged as promising tools for continuous glucose monitoring (CGM), particularly through sweat-based platforms. This review highlights recent advancements in enzymatic and non-enzymatic wearable biosensors, with a specific focus on the pivotal role of nanomaterials in enhancing sensor performance. In enzymatic sensors, nanomaterials serve as high-surface-area supports for glucose oxidase (GOx) immobilization and facilitate direct electron transfer (DET), thereby improving sensitivity, selectivity, and miniaturization. Meanwhile, non-enzymatic sensors leverage metal and metal oxide nanostructures as catalytic sites to mimic enzymatic activity, offering improved stability and durability. Both categories benefit from the integration of carbon-based materials, metal nanoparticles, conductive polymers, and hybrid composites, enabling the development of flexible, skin-compatible biosensing systems with wireless communication capabilities. The review critically evaluates sensor performance parameters, including sensitivity, limit of detection, and linear range. Finally, current limitations and future perspectives are discussed. These include the development of multifunctional sensors, closed-loop therapeutic systems, and strategies for enhancing the stability and cost-efficiency of biosensors for broader clinical adoption.
糖尿病患病率的不断上升使得开发非侵入性、可靠且能够进行实时分析的先进血糖监测系统成为必要。可穿戴电化学生物传感器已成为用于连续血糖监测(CGM)的有前途的工具,特别是通过基于汗液的平台。本综述重点介绍了酶促和非酶促可穿戴生物传感器的最新进展,特别关注纳米材料在提高传感器性能方面的关键作用。在酶促传感器中,纳米材料作为高表面积载体用于固定葡萄糖氧化酶(GOx)并促进直接电子转移(DET),从而提高灵敏度、选择性和小型化。同时,非酶促传感器利用金属和金属氧化物纳米结构作为催化位点来模拟酶活性,提供更高的稳定性和耐用性。这两类传感器都受益于碳基材料、金属纳米颗粒、导电聚合物和混合复合材料的整合,从而能够开发出具有无线通信能力的柔性、皮肤兼容的生物传感系统。本综述批判性地评估了传感器性能参数,包括灵敏度、检测限和线性范围。最后,讨论了当前的局限性和未来的前景。这些包括多功能传感器、闭环治疗系统的开发,以及提高生物传感器稳定性和成本效益以实现更广泛临床应用的策略。