Domitin Sylvain, Puff Nicolas, Pilot-Storck Fanny, Tiret Laurent, Joubert Frederic
Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, Paris, France.
Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 925 Physics, Paris, France; Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS, Université Paris Cité, Paris, France.
Biophys J. 2025 Jan 21;124(2):408-416. doi: 10.1016/j.bpj.2024.12.015. Epub 2024 Dec 13.
In eukaryotic cells, the phospholipid cardiolipin (CL) is a crucial component that influences the function and organization of the mitochondrial inner membrane. In this study, we examined its potential role in passive proton transmembrane flux using unilamellar vesicles composed of natural egg phosphatidylcholine (PC) alone or with the inclusion of 18 or 34 mol % CL. A membrane potential was induced by a potassium gradient, and oxonol VI dye was used to monitor membrane potential dissipation resulting from proton transmembrane efflux. Increasing the CL content led to a net increase in proton efflux, which was also dependent on the magnitude of the membrane potential. The same increase in proton efflux was measured in the presence of the equally negatively charged phosphatidylglycerol, indicating that the charge of CL plays a more important role than its structure in this mechanism. When varying the proton membrane permeability (p) using the protonophore CCCP, we observed that unlike PC liposomes, where a small amount of CCCP was sufficient to achieve maximum flux, a significantly larger amount of protonophore was required in the presence of CL. Conversely, increasing the buffer capacity increased proton flux, indicating that proton availability, rather than membrane permeability, may be the limiting factor for proton leak. Our findings demonstrated that a higher proton content associated with the membrane was correlated with an increasing leak in the presence of CL. Additionally, smaller liposome diameters appeared to favor proton leak. Taken together, our results suggest that the presence of negatively charged CL in a membrane traps protons and increases their leakage, potentially in a manner dependent on membrane curvature. We discuss the possible mechanisms and implications of these findings for mitochondrial respiration function.
在真核细胞中,磷脂心磷脂(CL)是影响线粒体内膜功能和组织的关键成分。在本研究中,我们使用仅由天然卵磷脂酰胆碱(PC)组成或包含18或34摩尔%CL的单层囊泡,研究了其在被动质子跨膜通量中的潜在作用。通过钾梯度诱导膜电位,并使用氧杂萘酚VI染料监测质子跨膜外流导致的膜电位消散。增加CL含量导致质子外流净增加,这也取决于膜电位的大小。在存在同样带负电荷的磷脂酰甘油的情况下,测量到了相同的质子外流增加,这表明在该机制中,CL的电荷比其结构起更重要的作用。当使用质子载体CCCP改变质子膜通透性(p)时,我们观察到,与PC脂质体不同,在PC脂质体中少量CCCP就足以实现最大通量,而在存在CL的情况下则需要大量得多的质子载体。相反,增加缓冲能力会增加质子通量,这表明质子可用性而非膜通透性可能是质子泄漏的限制因素。我们的研究结果表明,在存在CL的情况下,与膜相关的较高质子含量与泄漏增加相关。此外,较小的脂质体直径似乎有利于质子泄漏。综上所述,我们的结果表明,膜中带负电荷的CL的存在会捕获质子并增加其泄漏,这可能取决于膜曲率。我们讨论了这些发现对线粒体呼吸功能的可能机制和影响。