Suppr超能文献

对催化剂颗粒排列在燃料电池局部传质阻力中作用的分子理解。

Molecular Understanding of the Role of Catalyst Particle Arrangement in Local Mass Transport Resistance for Fuel Cells.

作者信息

Ran Aoxin, Fan Linhao, Tongsh Chasen, Wang Jiaqi, Qin Zhengguo, Du Qing, Ni Meng, Jiao Kui

机构信息

State Key Laboratory of Engines, Tianjin University, Tianjin, 300200, China.

Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), Hong Kong Polytechnic University, Hong Kong, 100872, China.

出版信息

Adv Sci (Weinh). 2025 Feb;12(5):e2409755. doi: 10.1002/advs.202409755. Epub 2024 Dec 15.

Abstract

Platinum (Pt) catalyst performance loss caused by a high local oxygen transport resistance is an urgent problem to be solved for proton exchange membrane fuel cells (PEMFCs). Rationally arranging Pt particles on carbon support is the primary approach for reducing mass transport resistance. Herein, using a unique method coupling Hybrid Reverse Monte Carlo, molecular dynamics simulations, and experimental measurements, a Pt particle arrangement strategy is proposed to reduce local oxygen transport resistance, based on a molecular-level understanding of its impact. The densely arranged Pt particles with a small interparticle distance lead to the denser ionomer layer due to the co-attraction effect, leading to a high local oxygen transport resistance. The nonuniformly arranged Pt particles with various interparticle distances cause the heterogeneous ionomer density, inducing the heterogeneous oxygen transport. Increasing the Pt-Pt interparticle distance from 2 to 5 nm substantially reduces the local oxygen transport resistance by over 50%. The uniform arrangement of Pt particles makes the ionomer layer density more homogeneous, resulting in more uniform oxygen transport. Therefore, uniformly arranging Pt particles with an interparticle distance of >5 nm on carbon support is preferred for reducing local oxygen transport resistance and improving the homogeneity of oxygen transport.

摘要

对于质子交换膜燃料电池(PEMFC)而言,由局部氧传输阻力过高导致的铂(Pt)催化剂性能损失是一个亟待解决的问题。在碳载体上合理排布Pt颗粒是降低传质阻力的主要方法。在此,通过结合混合反向蒙特卡罗法、分子动力学模拟和实验测量的独特方法,基于对局部氧传输阻力影响的分子水平理解,提出了一种降低局部氧传输阻力的Pt颗粒排布策略。由于共吸引效应,颗粒间距小的密集排布的Pt颗粒会导致离聚物层更致密,从而导致局部氧传输阻力较高。具有不同颗粒间距的非均匀排布的Pt颗粒会导致离聚物密度不均匀,从而引起氧传输的不均匀性。将Pt-Pt颗粒间距从2 nm增加到5 nm可使局部氧传输阻力大幅降低50%以上。Pt颗粒的均匀排布使离聚物层密度更均匀,从而使氧传输更均匀。因此,为降低局部氧传输阻力并提高氧传输的均匀性,优选在碳载体上均匀排布颗粒间距大于5 nm的Pt颗粒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f158/11792038/befa42211350/ADVS-12-2409755-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验