Marty Anne-Pia M, Ward Edward N, Lamb Jacob R, van Tartwijk Francesca W, Peck Lloyd S, Clark Melody S, Kaminski Clemens F
Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, Cambridge, CB3 0AS, UK.
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
Small Methods. 2025 May;9(5):e2401682. doi: 10.1002/smtd.202401682. Epub 2024 Dec 15.
The Antarctic seabed harbors significant biodiversity, and almost 90% of oceanic environments are permanently below 5 °C (i.e., deep sea and polar regions). However, organisms whose entire lifecycle occurs around 0 °C are understudied, leaving this large and diverse proportion of the global biome poorly understood. To address this question at the cellular level, tools are required for high-resolution imaging of biological systems under physiological conditions. This poses severe technical challenges. High-resolution imaging objectives require short working distances and immersion media, causing rapid heat transfer from the microscope to the sample. This affects the viability of live specimens and the interpretability of results. Here, we present a method for high-fidelity imaging of live biological samples at temperatures of around, or below, 0 °C. It relies on hardware additions to traditional microscopy, namely as a cooling collar, 10% ethanol as an immersion medium, and nitrogen flow to reduce condensation It can be straightforwardly implemented on different microscopy modalities, including super-resolution imaging. The method is demonstrated in live cell cultures derived from Antarctic fish and highlights the need to maintain physiological conditions for these fragile samples. Future applications include evolutionary biology, biophysics and biotechnology.
南极海床拥有丰富的生物多样性,并且几乎90%的海洋环境常年温度低于5摄氏度(即深海和极地地区)。然而,整个生命周期都在0摄氏度左右发生的生物却鲜有研究,这使得全球生物群落中这一庞大且多样的部分鲜为人知。为了在细胞水平上解决这个问题,需要能够在生理条件下对生物系统进行高分辨率成像的工具。这带来了严峻的技术挑战。高分辨率成像物镜需要短工作距离和浸没介质,这会导致热量从显微镜快速传递到样品。这会影响活标本的活力以及结果的可解释性。在此,我们提出一种在0摄氏度左右或低于0摄氏度的温度下对活生物样品进行高保真成像的方法。它依赖于对传统显微镜的硬件添加,即作为冷却套环、10%乙醇作为浸没介质以及用于减少冷凝的氮气流。它可以直接应用于不同的显微镜模式,包括超分辨率成像。该方法在源自南极鱼类的活细胞培养物中得到了验证,并突出了为这些脆弱样品维持生理条件的必要性。未来的应用包括进化生物学、生物物理学和生物技术。