Suppr超能文献

用于内源性基因激活的可诱导性dCas9-SAM人多能干细胞系的构建

Generation of an inducible dCas9-SAM human PSC line for endogenous gene activation.

作者信息

Petazzi Paolo, Gutierrez-Agüera Francisco, Roca-Ho Heleia, Castaño Julio, Bueno Clara, Alvarez Niuska, Forrester Lesley M, Sevilla Ana, Fidanza Antonella, Menendez Pablo

机构信息

Josep Carreras Leukemia Research Institute, Campus Clinic-UB, Casanova 143, Barcelona, Spain.

Spanish Network for Advanced Cell Therapies (TERAV), Carlos III Health Institute, Barcelona, Spain.

出版信息

Front Cell Dev Biol. 2024 Nov 29;12:1484955. doi: 10.3389/fcell.2024.1484955. eCollection 2024.

Abstract

The CRISPR/Cas9 system has transformed genome editing by enabling precise modifications for diverse applications. Recent advancements, including base editing and prime editing, have expanded its utility beyond conventional gene knock-out and knock-in strategies. Additionally, several catalytically dead Cas9 (dCas9) proteins fused to distinct activation domains have been developed to modulate endogenous gene expression when directed to their regulatory regions by specific single-guide RNAs. Here, we report the development of the H9 human pluripotent stem cell (hPSC) line expressing an inducible dCas9-SAM activator (H9-iCas9.SAM), designed to activate transcription of endogenous genes. The H9-iCas9.SAM cells were generated through targeted integration of an inducible CRISPR/Cas9-based gene activator cassette into the AAVS1 "safe-harbour" locus. Molecular analyses confirmed precise and specific integration, ensuring minimal off-target effects. Functional characterization revealed that H9-iCas9.SAM cells retain pluripotency and display inducible endogenous gene activation upon doxycycline treatment. The versatility of H9-iCas9.SAM cells was demonstrated in directed differentiation assays, yielding neural stem cells (ectoderm), hematopoietic progenitor cells (mesoderm), and hepatocytes (endoderm). This underscores their potential in developmental biology studies and cell therapy applications. The engineered H9-iCas9.SAM line provides a robust platform for investigating gene function and advancing next-generation cell-based therapies.

摘要

CRISPR/Cas9系统通过实现多种应用的精确修饰,彻底改变了基因组编辑技术。包括碱基编辑和引导编辑在内的最新进展,已将其应用范围扩展到传统的基因敲除和敲入策略之外。此外,人们还开发了几种与不同激活结构域融合的催化失活Cas9(dCas9)蛋白,当通过特定的单向导RNA将其导向调控区域时,可调节内源性基因的表达。在此,我们报告了表达可诱导dCas9-SAM激活剂的H9人多能干细胞(hPSC)系(H9-iCas9.SAM)的开发,其旨在激活内源性基因的转录。通过将基于CRISPR/Cas9的可诱导基因激活盒靶向整合到AAVS1“安全港”位点,产生了H9-iCas9.SAM细胞。分子分析证实了精确且特异的整合,确保了最小的脱靶效应。功能表征显示,H9-iCas9.SAM细胞保留了多能性,并在强力霉素处理后表现出可诱导的内源性基因激活。H9-iCas9.SAM细胞的多功能性在定向分化实验中得到了证明,可产生神经干细胞(外胚层)、造血祖细胞(中胚层)和肝细胞(内胚层)。这突出了它们在发育生物学研究和细胞治疗应用中的潜力。工程化的H9-iCas9.SAM细胞系为研究基因功能和推进下一代基于细胞的治疗提供了一个强大的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebcd/11638181/611d2cc38988/fcell-12-1484955-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验