重编程因子 NeuroD1 的表达水平对于不同细胞类型向神经元转化效率至关重要。

Expression level of the reprogramming factor NeuroD1 is critical for neuronal conversion efficiency from different cell types.

机构信息

Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.

出版信息

Sci Rep. 2022 Oct 26;12(1):17980. doi: 10.1038/s41598-022-22802-z.

Abstract

Several transcription factors, including NeuroD1, have been shown to act as neuronal reprogramming factors (RFs) that induce neuronal conversion from somatic cells. However, it remains unexplored whether expression levels of RFs in the original cells affect reprogramming efficiency. Here, we show that the neuronal reprogramming efficiency from two distinct glial cell types, microglia and astrocytes, is substantially dependent on the expression level of NeuroD1: low expression failed to induce neuronal reprogramming, whereas elevated NeuroD1 expression dramatically improved reprogramming efficiency in both cell types. Moreover, even under conditions where NeuroD1 expression was too low to induce effective conversion by itself, combined expression of three RFs (Ascl1, Brn2, and NeuroD1) facilitated the breaking down of cellular barriers, inducing neuronal reprogramming. Thus, our results suggest that a sufficiently high expression level of RFs, or alternatively their combinatorial expression, is the key to achieving efficient neuronal reprogramming from different cells.

摘要

几种转录因子,包括 NeuroD1,已被证明可以作为神经元重编程因子(RFs),诱导体细胞向神经元转化。然而,RFs 在原始细胞中的表达水平是否影响重编程效率仍未被探索。在这里,我们表明,两种不同的神经胶质细胞类型(小胶质细胞和星形胶质细胞)的神经元重编程效率在很大程度上取决于 NeuroD1 的表达水平:低表达不能诱导神经元重编程,而高表达则显著提高了两种细胞类型的重编程效率。此外,即使在 NeuroD1 表达水平低到不足以自身诱导有效转化的情况下,三种 RFs(Ascl1、Brn2 和 NeuroD1)的联合表达也有助于打破细胞屏障,诱导神经元重编程。因此,我们的结果表明,RFs 的表达水平足够高,或者它们的组合表达,是实现不同细胞高效神经元重编程的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9384/9606360/68fee4671a23/41598_2022_22802_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索