Suppr超能文献

用于区分坏死性筋膜炎、非弧菌性坏死性筋膜炎和蜂窝织炎的机器学习方法

Machine Learning Approach to Classify Necrotizing Fasciitis, Non-Vibrio Necrotizing Fasciitis and Cellulitis.

作者信息

Chang Chia-Peng, Wu Kai-Hsiang

机构信息

Department of Emergency Medicine, Chiayi Chang Gung Memorial Hospital, Puzih City, Chiayi County, Taiwan.

Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Puzi City, Chiayi County, Taiwan.

出版信息

Infect Drug Resist. 2024 Dec 11;17:5513-5521. doi: 10.2147/IDR.S487893. eCollection 2024.

Abstract

BACKGROUND

Recent advancements in artificial intelligence have led to increased adoption of machine learning in disease identification, particularly for challenging diagnoses like necrotizing fasciitis and infections. This shift is driven by the technology's efficiency, objectivity, and accuracy, offering potential solutions to longstanding diagnostic hurdles in clinical practice.

METHODS

This investigation incorporated 180 inpatients suffering from soft tissue infections. The participants were categorized into groups: cellulitis, non-Vibrio necrotizing fasciitis (NF), or NF. To predict the three relevant outcomes, we employed Light Gradient Boosting Machine (LightGBM) and 5-fold cross-validation methodologies for the development of a multi-class categorization model. Moreover, we applied the SHapley Additive exPlanations (SHAP) methodology to decipher the model's predictions.

RESULTS

The multi-classification model possesses substantial predictive capacity, with a weighted-average AUC of 0.86, sensitivity of 87.2%, specificity of 74.5%, NPV of 81.6%, and PPV of 85.4%. The model's calibration was assessed using the Brier score, yielding a weighted mean of 0.084. This low value demonstrates a strong correlation between predicted probabilities and actual outcomes, indicating high predictive accuracy and reliability in the model's forecasts.

CONCLUSIONS

We effectively developed a multiclassification model aimed at forecasting the occurrence of cellulitis, non-Vibrio NF, or V. Vulnificus NF in patients suffering from soft tissue infection, and we further described the model's predictions using the SHAP algorithm.

摘要

背景

人工智能的最新进展促使机器学习在疾病识别中的应用增加,特别是在坏死性筋膜炎和感染等具有挑战性的诊断方面。这种转变是由该技术的效率、客观性和准确性驱动的,为临床实践中长期存在的诊断障碍提供了潜在的解决方案。

方法

本研究纳入了180名患有软组织感染的住院患者。参与者被分为以下几组:蜂窝织炎、非创伤弧菌坏死性筋膜炎(NF)或创伤弧菌坏死性筋膜炎。为了预测这三种相关结果,我们采用了轻量级梯度提升机(LightGBM)和五折交叉验证方法来开发多类别分类模型。此外,我们应用了SHapley值加法解释(SHAP)方法来解读模型的预测结果。

结果

多类别分类模型具有很强的预测能力,加权平均AUC为0.86,灵敏度为87.2%,特异性为74.5%,阴性预测值为81.6%,阳性预测值为85.4%。使用布里尔评分评估模型的校准情况,加权平均值为0.084。这个低值表明预测概率与实际结果之间有很强的相关性,表明模型预测具有很高的准确性和可靠性。

结论

我们有效地开发了一个多类别分类模型,旨在预测软组织感染患者发生蜂窝织炎、非创伤弧菌坏死性筋膜炎或创伤弧菌坏死性筋膜炎的情况,并使用SHAP算法进一步描述了模型的预测结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验