Dept. Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA.
Computer School, Beijing Information Science & Technology University, Beijing, China.
AMIA Annu Symp Proc. 2022 Feb 21;2021:813-822. eCollection 2021.
Heart failure (HF) is a major cause of mortality. Accurately monitoring HF progress and adjusting therapies are critical for improving patient outcomes. An experienced cardiologist can make accurate HF stage diagnoses based on combination of symptoms, signs, and lab results from the electronic health records (EHR) of a patient, without directly measuring heart function. We examined whether machine learning models, more specifically the XGBoost model, can accurately predict patient stage based on EHR, and we further applied the SHapley Additive exPlanations (SHAP) framework to identify informative features and their interpretations. Our results indicate that based on structured data from EHR, our models could predict patients' ejection fraction (EF) scores with moderate accuracy. SHAP analyses identified informative features and revealed potential clinical subtypes of HF. Our findings provide insights on how to design computing systems to accurately monitor disease progression of HF patients through continuously mining patients' EHR data.
心力衰竭(HF)是主要的死亡原因。准确监测 HF 的进展并调整治疗方案对于改善患者的预后至关重要。有经验的心脏病专家可以根据患者电子健康记录(EHR)中的症状、体征和实验室结果的组合,而无需直接测量心脏功能,做出准确的 HF 分期诊断。我们研究了机器学习模型(特别是 XGBoost 模型)是否可以根据 EHR 准确预测患者的分期,并且我们进一步应用了 SHapley Additive exPlanations(SHAP)框架来识别有用的特征及其解释。我们的结果表明,基于 EHR 的结构化数据,我们的模型可以以中等准确性预测患者的射血分数(EF)评分。SHAP 分析确定了有用的特征,并揭示了 HF 的潜在临床亚型。我们的研究结果提供了有关如何设计计算系统的见解,以便通过持续挖掘患者的 EHR 数据来准确监测 HF 患者的疾病进展。