Disigant Isabela, de Almeida Juliana, Okamoto Débora Noma, Bertazzoli Rodnei, de Arruda Rodrigues Christiane
Department of Chemical Engineering, Instituto de Ciências Ambientais, Químicas Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema, Sao Paulo 09913-030, Brazil.
Unesp, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, P.O. Box 355, Araraquara, Sao Paulo 14800-900, Brazil.
ACS Omega. 2024 Nov 22;9(49):48571-48585. doi: 10.1021/acsomega.4c07470. eCollection 2024 Dec 10.
To enable the photoelectrocatalytic treatment of large volumes of water containing low concentrations of pollutants, this study introduces a hybrid photocatalyst, composed of nanotubular oxides grown on TiW alloy ( = 0.5 and 5.0 wt %) modified with UiO-66 MOF, for degradation of estrone (E1) and 17α-ethinyl estradiol (EE2). The oxide layer (Nt/TiW) was prepared via anodization, while UiO-66 nanoparticles were synthesized by using a solvothermal process. Different techniques for modifying nanotubular oxides were evaluated to maximize the photocatalytic activity and the sorption process. In photo(electro)catalytic experiments using low concentrations of E1 and EE2 synthetic solutions and UV-vis radiation (100 W/cm), all modified materials exhibited approximately 40% higher degradation compared to the unmodified photocatalyst, keeping the same sequential performance of the photocatalysts (Nt/TiO < Nt/Ti-0.5W < Nt/Ti-5.0W) independent of the treatment. This enhancement was attributed to the MOF's increased hormone sorption, with no synergistic interaction observed between the photocatalyst and the adsorbent. In real water supply matrices, the photoelectrocatalytic removal rate of E1 using Nt/Ti-5.0W modified UiO-66 under UV-vis radiation and 1.3 V was 0.168 s, while for EE2, it was 0.310 min, approximately 1.78 and 18.21 times faster than obtained with the unmodified photocatalyst. The slower degradation rate of EE2 compared to that of E1 is attributed to the formation of denser intermediates that compete with smaller organic molecules in the real matrix. The cooperative effect between NT/TiW and UiO-66 favored the confinement of pollutants and by-products within the UiO-66 cavity, minimizing the diffusion effects and promoting the degradation of these compounds by the OH radical generated at the oxide/solution interface. Among the tested electrodes, NT/Ti5W modified with UiO-66 demonstrated the highest efficiency and stability during the recycle tests. This highlights its promise for applications in photocatalytic processes for treating water supplies with low pollutant concentrations.
为实现对含有低浓度污染物的大量水体的光电催化处理,本研究引入了一种混合光催化剂,该催化剂由生长在经UiO - 66金属有机框架(MOF)改性的TiW合金( = 0.5和5.0 wt%)上的纳米管状氧化物组成,用于降解雌酮(E1)和17α - 乙炔雌二醇(EE2)。氧化层(Nt/TiW)通过阳极氧化制备,而UiO - 66纳米颗粒则采用溶剂热法合成。对修饰纳米管状氧化物的不同技术进行了评估,以最大化光催化活性和吸附过程。在使用低浓度E1和EE2合成溶液以及紫外 - 可见辐射(100 W/cm)的光(电)催化实验中,与未修饰的光催化剂相比,所有修饰材料的降解率均高出约40%,且光催化剂(Nt/TiO < Nt/Ti - 0.5W < Nt/Ti - 5.0W)的顺序性能不受处理方式影响而保持不变。这种增强归因于MOF对激素吸附的增加,在光催化剂和吸附剂之间未观察到协同相互作用。在实际供水基质中,在紫外 - 可见辐射和1.3 V电压下,使用经UiO - 66修饰的Nt/Ti - 5.0W对E1的光电催化去除率为0.168 s,而对EE2的去除率为0.310 min,分别比未修饰的光催化剂快约1.78倍和18.21倍。EE2的降解速率比E1慢,这归因于形成了更致密的中间体,这些中间体在实际基质中与较小的有机分子竞争。NT/TiW和UiO - 66之间的协同效应有利于将污染物和副产物限制在UiO - 66腔内,最小化扩散效应,并促进在氧化物/溶液界面产生的羟基自由基对这些化合物的降解。在测试的电极中,经UiO - 66修饰的NT/Ti5W在循环测试中表现出最高的效率和稳定性。这突出了其在处理低污染物浓度供水的光催化过程中的应用前景。