Crivelli Carolyne I P, de Almeida Juliana, Lindino Cleber A, de Almeida Lucio C, Rodrigues Christiane A, Bessegato Guilherme G
Universidade Estadual do Oeste do Paraná (UNIOESTE), Toledo Campus, Rua da Faculdade 645, 85903-000 Toledo, Parana, Brazil.
Universidade Federal de São Paulo (UNIFESP), Rua São Nicolau 210, 09913-030 Diadema, São Paulo, Brazil.
ACS Omega. 2024 Nov 13;9(47):47052-47064. doi: 10.1021/acsomega.4c07301. eCollection 2024 Nov 26.
This study introduces a novel photoelectrocatalytic (PEC) system featuring a Ti-O-Cu mixed nanotubular oxide photoanode for the simultaneous activation of peroxymonosulfate (PMS), targeting the removal of emerging contaminants, such as methylene blue dye, tetracycline, and ibuprofen. The Ti-5.5Cu (atom %) alloy substrate and the nanotubular oxide layer were synthesized through arc melting and electrochemical anodization. The conditions of photoelectrocatalysis-assisted PMS activation (PEC/aPMS) were optimized using experimental design, achieving 90.4% decolorization of methylene blue dye within 30 min under optimal conditions: pH 4, an applied potential of 0.5 V vs Ag/AgCl, and a PMS concentration 50 times the molar concentration of the contaminant, utilizing a 10 W UV LED at 365 nm. In contrast, only 25% decolorization was observed without PMS. Singlet oxygen (O) was identified as the primary pathway for PMS activation (nonradical). Additionally, the PEC/aPMS system effectively degraded model contaminants, achieving 52% degradation of ibuprofen, 78% of methylene blue, and 92% of tetracycline in 10 mg L total organic carbon solutions within 60 min under optimized conditions. The electrode exhibited remarkable stability, maintaining its efficiency throughout the experiments. These findings highlight the potential of mixed nanostructured oxide electrodes for developing highly efficient and durable PEC systems with integrated PMS activation for the removal of organic contaminants.
本研究介绍了一种新型光电催化(PEC)系统,该系统具有用于同时活化过氧单硫酸盐(PMS)的Ti-O-Cu混合纳米管状氧化物光阳极,目标是去除亚甲基蓝染料、四环素和布洛芬等新兴污染物。通过电弧熔炼和电化学阳极氧化合成了Ti-5.5Cu(原子%)合金基底和纳米管状氧化物层。采用实验设计优化了光电催化辅助PMS活化(PEC/aPMS)的条件,在最佳条件下:pH值为4,相对于Ag/AgCl施加0.5 V的电位,PMS浓度为污染物摩尔浓度的50倍,利用365 nm的10 W紫外发光二极管(UV LED),30分钟内实现了亚甲基蓝染料90.4%的脱色。相比之下,在没有PMS的情况下,仅观察到25%的脱色。单线态氧(¹O₂)被确定为PMS活化的主要途径(非自由基途径)。此外,在优化条件下,PEC/aPMS系统在60分钟内有效降解了模型污染物,在10 mg L总有机碳溶液中实现了布洛芬52%的降解、亚甲基蓝78%的降解和四环素92%的降解。该电极表现出显著的稳定性,在整个实验过程中保持其效率。这些发现突出了混合纳米结构氧化物电极在开发具有集成PMS活化功能的高效耐用PEC系统以去除有机污染物方面的潜力。