Suppr超能文献

NC@BiS纳米球作为锂离子电池的高性能阳极材料

NC@BiS Nanospheres as High-Performance Anode Materials for Lithium-Ion Batteries.

作者信息

Kang Wanda, Li Sen, Liu Xingchen, Yan Kun, Zhang Wengao, Fan Youkang, Pan Yuxiang, Feng Jun

机构信息

Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.

Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong,China.

出版信息

ACS Omega. 2024 Nov 26;9(49):48755-48765. doi: 10.1021/acsomega.4c08339. eCollection 2024 Dec 10.

Abstract

BiS holds immense potential to be promoted as an anode material for lithium-ion batteries (LIBs), owing to the high theoretical gravimetric and volumetric capacities. However, the poor electrical conductivity and volume expansion during cycling hinder the practical applications of BiS. Therefore, through subsequent heat treatment, the nitrogen-doped carbon film was successfully loaded on the nanosphere BiS, which we call nitrogen-rich carbon layer-coated BiS (NC@BiS). Hence, the nanosphere BiS uniformly covered by a nitrogen-rich carbon layer was successfully coated on the BiS surface (NC@BiS) through post-treatment. Due to the effective interaction between glutathione and inorganic materials, dopamine hydrochloride molecules are introduced and polymerized on the surface of the spherical BiS structure and then converted into a nitrogen-rich carbon layer with an average thickness of 10.0 nm. The electrochemical tests reveal that the discharge specific capacities of BiS and NC@BiS reach 340.99 and 645.13 mAh/g after 300 cycles at 100 mA/g, respectively. Kinetic analysis shows that the contribution of pseudocapacitance behavior increases by about 10% after the nitrogen-rich carbon layer is coated. These results suggest the potential of NC@BiS as a high-performance anode material for LIBs; the stability can be enhanced by core-shell structures.

摘要

由于具有较高的理论重量和体积容量,二硫化铋(BiS)作为锂离子电池(LIBs)的负极材料具有巨大的推广潜力。然而,其较差的导电性和循环过程中的体积膨胀阻碍了BiS的实际应用。因此,通过后续热处理,成功地在纳米球BiS上负载了氮掺杂碳膜,我们称之为富氮碳层包覆的BiS(NC@BiS)。因此,通过后处理成功地在BiS表面包覆了均匀覆盖有富氮碳层的纳米球BiS(NC@BiS)。由于谷胱甘肽与无机材料之间的有效相互作用,盐酸多巴胺分子被引入并在球形BiS结构表面聚合,然后转化为平均厚度为10.0nm的富氮碳层。电化学测试表明,在100mA/g下循环300次后,BiS和NC@BiS的放电比容量分别达到340.99和645.13mAh/g。动力学分析表明,包覆富氮碳层后赝电容行为的贡献增加了约10%。这些结果表明NC@BiS作为LIBs高性能负极材料的潜力;核壳结构可以提高其稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0251/11635501/8dc2cc674df1/ao4c08339_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验