Zhang Xiaojing, Xie Jing, Lu Zhenjiang, Liu Xinhui, Tang Yakun, Wang Yang, Hu Jindou, Cao Yali
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China.
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China.
J Colloid Interface Sci. 2024 Aug;667:385-392. doi: 10.1016/j.jcis.2024.04.094. Epub 2024 Apr 15.
Introducing the appropriate vacancies to augment the active sites and improve the electrochemical kinetics while maintaining high cyclability is a major challenge for its widespread application in electrochemical energy storage. Here, core-shell structured BiS@C with sulfur vacancies was prepared by hydrothermal method and one-step carbonization/sulfuration process, which significantly improves the intrinsic electrical conductivity and ion transport efficiency of BiS. Additionally, the uniform protective carbon layer around surface of composite maintains structural stability and effectively alleviates volume expansion during alloying/dealloying. As a result, the BSC-500 anode exhibits a brilliant reversible capacity of 636 mAh/g at 0.2 A/g and a long-term stable capacity of 524 mAh/g for 500 cycles at a high current density of 3 A/g in lithium-ion batteries. In addition, the assembled BiS@C//LiCoO full cell delivered a capacity of 184 mAh/g at 1 A/g and excellent cyclability (125 mAh/g after 1000 cycles). The proposed strategy of combining sulfur vacancies with a core-shell structure to improve the electrochemical kinetics of BiS in lithium-ion batteries off the prospect for practical applications of transition metal sulfide anodes.
在保持高循环稳定性的同时,引入合适的空位以增加活性位点并改善电化学动力学,是其在电化学储能领域广泛应用面临的一项重大挑战。在此,通过水热法和一步碳化/硫化工艺制备了具有硫空位的核壳结构BiS@C,这显著提高了BiS的本征电导率和离子传输效率。此外,复合材料表面均匀的保护性碳层维持了结构稳定性,并有效缓解了合金化/脱合金化过程中的体积膨胀。结果,在锂离子电池中,BSC-500负极在0.2 A/g时表现出636 mAh/g的出色可逆容量,在3 A/g的高电流密度下500次循环后具有524 mAh/g的长期稳定容量。此外,组装的BiS@C//LiCoO全电池在1 A/g时容量为184 mAh/g,且具有出色的循环稳定性(1000次循环后为125 mAh/g)。所提出的将硫空位与核壳结构相结合以改善BiS在锂离子电池中的电化学动力学的策略,为过渡金属硫化物负极的实际应用开辟了前景。